Abstract

We report experimental demonstration of an all-optical continuously tunable delay line based on parametric mixing with a total delay range of 7.34 μs. The bit-error rate performance of the delay line was characterized for a 10-Gb/s NRZ data channel. This result is enabled by cascading a discrete delay line that consists of 16 wavelength-dependent delays and a continuously tunable delay stage. Four wavelength conversion stages based on four-wave mixing in silicon waveguides were performed in order to achieve wavelength-preserving operation. The wavelength-optimized optical phase conjugation scheme employed in the delay line is capable of minimizing the residual dispersion for the entire tuning range.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ramaswami and K. N. Sivarajan, ““Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3(5), 489–500 (1995).
    [CrossRef]
  2. E. Choi, J. H. Na, S. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express 13(4), 1334–1345 (2005).
    [CrossRef] [PubMed]
  3. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
    [CrossRef]
  4. G. N. Pearson, K. D. Ridley, and D. V. Willetts, “Chirp-pulse-compression three-dimensional lidar imager with fiber optics,” Appl. Opt. 44(2), 257–265 (2005).
    [CrossRef] [PubMed]
  5. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
    [CrossRef]
  6. R. Ramaswami, and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).
  7. S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
    [CrossRef]
  8. R. W. Boyd, and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” Progress in Optics, vol. 43, edited by E. Wolf (Elsevier, Amsterdam, 2002), Chap. 6, p. 497–530.
  9. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–22 (2006).
    [CrossRef]
  10. J. van Howe and C. Xu, “Ultrafast optical delay line by use of a time-prism pair,” Opt. Lett. 30(1), 99–101 (2005).
    [CrossRef] [PubMed]
  11. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
    [CrossRef] [PubMed]
  12. J. Ren, N. Alic, E. Myslivets, R. E. Saperstein, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, P. A. Andrekson, and S. Radic, “12.47 ns continuously-tunable two-pump parametric delay,” ECOC 2006, Th4.4.3 PDP.
  13. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
    [CrossRef]
  14. Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express 16(14), 10349–10357 (2008).
    [CrossRef] [PubMed]
  15. E. Myslivets, N. Alic, J. R. Windmiller, R. M. Jopson, and S. Radic, “400 ns continuously tunable delay of 10 Gbps intensity modulated optical signal,” Photon. Technol. Lett. 21(4), 251–253 (2009).
    [CrossRef]
  16. L. C. Christen, O. F. Yilmaz, S. R. Nuccio, X. Wu, I. Fazal, A. E. Willner, C. Langrock, and M. M. Fejer, “Tunable 105 ns optical delay for 80 Gb/s RZ-DQPSK, 40 Gb/s RZ-DPSK, and 40 Gb/s RZ-OOK signals using wavelength conversion and chromatic dispersion,” Opt. Lett. 34(4), 542–544 (2009).
    [CrossRef] [PubMed]
  17. Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17(9), 7004–7010 (2009).
    [CrossRef] [PubMed]
  18. E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-micros continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17(14), 11958–11964 (2009).
    [CrossRef] [PubMed]
  19. Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 μs tunable delay using parametric mixing and optical phase conjugation in Si waveguides: reply,” Opt. Express 17(18), 16029–16031 (2009).
    [CrossRef]
  20. S. R. Nuccio, O. F. Yilmaz, S. Khaleghi, X. Wu, L. Christen, I. Fazal, and A. E. Willner, “Tunable 503 ns optical delay of 40 Gbit/s RZ-OOK and RZ-DPSK using a wavelength scheme for phase conjugation to reduce residual dispersion and increase delay,” Opt. Lett. 34(12), 1903–1905 (2009).
    [CrossRef] [PubMed]
  21. S. Namiki, “Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersion optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008).
    [CrossRef]

2009 (6)

E. Myslivets, N. Alic, J. R. Windmiller, R. M. Jopson, and S. Radic, “400 ns continuously tunable delay of 10 Gbps intensity modulated optical signal,” Photon. Technol. Lett. 21(4), 251–253 (2009).
[CrossRef]

L. C. Christen, O. F. Yilmaz, S. R. Nuccio, X. Wu, I. Fazal, A. E. Willner, C. Langrock, and M. M. Fejer, “Tunable 105 ns optical delay for 80 Gb/s RZ-DQPSK, 40 Gb/s RZ-DPSK, and 40 Gb/s RZ-OOK signals using wavelength conversion and chromatic dispersion,” Opt. Lett. 34(4), 542–544 (2009).
[CrossRef] [PubMed]

Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17(9), 7004–7010 (2009).
[CrossRef] [PubMed]

S. R. Nuccio, O. F. Yilmaz, S. Khaleghi, X. Wu, L. Christen, I. Fazal, and A. E. Willner, “Tunable 503 ns optical delay of 40 Gbit/s RZ-OOK and RZ-DPSK using a wavelength scheme for phase conjugation to reduce residual dispersion and increase delay,” Opt. Lett. 34(12), 1903–1905 (2009).
[CrossRef] [PubMed]

E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-micros continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17(14), 11958–11964 (2009).
[CrossRef] [PubMed]

Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 μs tunable delay using parametric mixing and optical phase conjugation in Si waveguides: reply,” Opt. Express 17(18), 16029–16031 (2009).
[CrossRef]

2008 (2)

2007 (1)

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

2006 (2)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–22 (2006).
[CrossRef]

S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
[CrossRef]

2005 (4)

2003 (1)

1997 (1)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

1995 (1)

R. Ramaswami and K. N. Sivarajan, ““Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3(5), 489–500 (1995).
[CrossRef]

Alic, N.

E. Myslivets, N. Alic, J. R. Windmiller, R. M. Jopson, and S. Radic, “400 ns continuously tunable delay of 10 Gbps intensity modulated optical signal,” Photon. Technol. Lett. 21(4), 251–253 (2009).
[CrossRef]

E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-micros continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17(14), 11958–11964 (2009).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–22 (2006).
[CrossRef]

Chen, X.

Choi, E.

Christen, L.

Christen, L. C.

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Dai, Y.

Fazal, I.

Fejer, M. M.

L. C. Christen, O. F. Yilmaz, S. R. Nuccio, X. Wu, I. Fazal, A. E. Willner, C. Langrock, and M. M. Fejer, “Tunable 105 ns optical delay for 80 Gb/s RZ-DQPSK, 40 Gb/s RZ-DPSK, and 40 Gb/s RZ-OOK signals using wavelength conversion and chromatic dispersion,” Opt. Lett. 34(4), 542–544 (2009).
[CrossRef] [PubMed]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Foster, M. A.

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Gaeta, A. L.

Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 μs tunable delay using parametric mixing and optical phase conjugation in Si waveguides: reply,” Opt. Express 17(18), 16029–16031 (2009).
[CrossRef]

Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17(9), 7004–7010 (2009).
[CrossRef] [PubMed]

Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express 16(14), 10349–10357 (2008).
[CrossRef] [PubMed]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–22 (2006).
[CrossRef]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–22 (2006).
[CrossRef]

Han, Y.

Jalali, B.

Jopson, R. M.

E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-micros continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17(14), 11958–11964 (2009).
[CrossRef] [PubMed]

E. Myslivets, N. Alic, J. R. Windmiller, R. M. Jopson, and S. Radic, “400 ns continuously tunable delay of 10 Gbps intensity modulated optical signal,” Photon. Technol. Lett. 21(4), 251–253 (2009).
[CrossRef]

Karlsson, M.

Khaleghi, S.

Kuo, B. P. P.

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Langrock, C.

L. C. Christen, O. F. Yilmaz, S. R. Nuccio, X. Wu, I. Fazal, A. E. Willner, C. Langrock, and M. M. Fejer, “Tunable 105 ns optical delay for 80 Gb/s RZ-DQPSK, 40 Gb/s RZ-DPSK, and 40 Gb/s RZ-OOK signals using wavelength conversion and chromatic dispersion,” Opt. Lett. 34(4), 542–544 (2009).
[CrossRef] [PubMed]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Lee, B. H.

Lipson, M.

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

McKinstrie, C. J.

Moro, S.

Mudhana, G.

Myslivets, E.

E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-micros continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17(14), 11958–11964 (2009).
[CrossRef] [PubMed]

E. Myslivets, N. Alic, J. R. Windmiller, R. M. Jopson, and S. Radic, “400 ns continuously tunable delay of 10 Gbps intensity modulated optical signal,” Photon. Technol. Lett. 21(4), 251–253 (2009).
[CrossRef]

Na, J. H.

Namiki, S.

Nuccio, S. R.

Okawachi, Y.

Pearson, G. N.

Radic, S.

E. Myslivets, N. Alic, J. R. Windmiller, R. M. Jopson, and S. Radic, “400 ns continuously tunable delay of 10 Gbps intensity modulated optical signal,” Photon. Technol. Lett. 21(4), 251–253 (2009).
[CrossRef]

E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-micros continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17(14), 11958–11964 (2009).
[CrossRef] [PubMed]

Ramaswami, R.

R. Ramaswami and K. N. Sivarajan, ““Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3(5), 489–500 (1995).
[CrossRef]

Ridley, K. D.

Roussev, R.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Ryu, S.

Salem, R.

Sharping, J. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
[CrossRef] [PubMed]

Sivarajan, K. N.

R. Ramaswami and K. N. Sivarajan, ““Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3(5), 489–500 (1995).
[CrossRef]

Turner-Foster, A. C.

van Howe, J.

Wang, Y.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
[CrossRef] [PubMed]

Willetts, D. V.

Willner, A. E.

Windmiller, J. R.

E. Myslivets, N. Alic, J. R. Windmiller, R. M. Jopson, and S. Radic, “400 ns continuously tunable delay of 10 Gbps intensity modulated optical signal,” Photon. Technol. Lett. 21(4), 251–253 (2009).
[CrossRef]

Wu, X.

Xu, C.

Yan, L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Yilmaz, O. F.

Yoo, S. J. B.

Yu, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Appl. Opt. (1)

IEEE/ACM Trans. Netw. (1)

R. Ramaswami and K. N. Sivarajan, ““Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3(5), 489–500 (1995).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (6)

Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express 16(14), 10349–10357 (2008).
[CrossRef] [PubMed]

E. Choi, J. H. Na, S. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express 13(4), 1334–1345 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
[CrossRef] [PubMed]

Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17(9), 7004–7010 (2009).
[CrossRef] [PubMed]

E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-micros continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17(14), 11958–11964 (2009).
[CrossRef] [PubMed]

Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 μs tunable delay using parametric mixing and optical phase conjugation in Si waveguides: reply,” Opt. Express 17(18), 16029–16031 (2009).
[CrossRef]

Opt. Lett. (3)

Opt. Photon. News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–22 (2006).
[CrossRef]

Photon. Technol. Lett. (3)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

E. Myslivets, N. Alic, J. R. Windmiller, R. M. Jopson, and S. Radic, “400 ns continuously tunable delay of 10 Gbps intensity modulated optical signal,” Photon. Technol. Lett. 21(4), 251–253 (2009).
[CrossRef]

Other (3)

R. W. Boyd, and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” Progress in Optics, vol. 43, edited by E. Wolf (Elsevier, Amsterdam, 2002), Chap. 6, p. 497–530.

R. Ramaswami, and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).

J. Ren, N. Alic, E. Myslivets, R. E. Saperstein, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, P. A. Andrekson, and S. Radic, “12.47 ns continuously-tunable two-pump parametric delay,” ECOC 2006, Th4.4.3 PDP.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The experimental setup to cascade the discretely and continuously tunable delay line. (b) The setup for the two DCF links. Raman pumps are used in each DCF spools to fully compensate for the 40-dB propagation loss in the link throughout the wavelength conversion range. (c) The setup for each of the four wavelength conversion stages utilizing silicon waveguides.

Fig. 2
Fig. 2

Dispersion management scheme to achieve zero residual GVD for the entire delay system.

Fig. 3
Fig. 3

(a) The tunable delay values in terms of the discrete (λk , black line) and the continuous (λA , colored lines) wavelength tunings. points indicate the positions for the 16 discrete channels: the wavelengths and the delay values. The colored lines show the wavelength tuning and the delay range of the continuous stage when the corresponding discrete delay is chosen. (b) Measured tunable delay of the continuous stage as a function of λA when the 1st channel is chosen. The delay is measured directly by an oscilloscope with a data pattern at 100 Mb/s. (c) The measured 7.34-μs delay between the shortest delay setting at (α) and the longest delay setting at (ε). A data pattern at 20 Mb/s is used for the measurement.

Fig. 4
Fig. 4

Optical spectra of the four FWMs for achieving the delay value at the γ point. Arrows show the wavelength conversion directions.

Fig. 5
Fig. 5

Measured BER curves of back-to-back (B2B) and after transmission through the entire tunable delay systems at different delays. Insert shows the eye-diagram measured at γ delay at a BER of less than 10−11.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

χ A ( λ A ) χ B ( λ B ) = χ k
τ ( k , λ A , λ B ) = τ discrete ( k ) + [ λ A , 1 λ A χ A ( λ ) d λ + λ B , 1 λ B χ B ( λ ) d λ ]
τ ( k , λ A , λ B ) = τ discrete ( k ) + [ λ A , 1 λ A , k χ A ( λ ) d λ + λ B , 1 λ B , k χ B ( λ ) d λ ] + [ λ A , k λ A χ A ( λ ) d λ + λ B , k λ B χ B ( λ ) d λ ]

Metrics