Abstract

We demonstrate excitation of the azimuthally-polarized TE01 cylindrical waveguide mode in hollow glass and metal waveguides with 780 nm light. Experimentally, we demonstrate formation of the vectorial vortex beams, and measure attenuation lengths of the TE01 mode in hollow optical fibers with diameters of 50–100 microns. By silver-coating the inner walls of the dielectric fibers, we demonstrate a ≈ 200% increase in the attenuation length.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia, "Atom Hosepipes," Contemporary Phys. 39, 351-369 (1998).
    [CrossRef]
  2. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
    [CrossRef] [PubMed]
  3. T. L. Gustavson, A. Landragin, and M. A. Kasevich, "Rotation sensing with a dual atom-interferometer Sagnac gyroscope" Class. Quantum. Grav. 17, 2385-2398 (2000).
    [CrossRef]
  4. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, "Laser-Guided Atoms in Hollow-Core Optical Fibers," Phys. Rev. Lett. 75(18), 3253-3256 (1995).
    [CrossRef] [PubMed]
  5. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, "Evanescent-wave guiding of atoms in hollow optical fibers," Phys. Rev. A 53(2), 648-651 (1996).
    [CrossRef] [PubMed]
  6. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett. 76(24), 4500-4503 (1996).
    [CrossRef] [PubMed]
  7. D. M¨uller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, "Guiding laser-cooled atoms in hollow-core fibers," Phys. Rev. A 61(3), 033411 (2000).
    [CrossRef]
  8. F. K. Fatemi, M. Bashkansky, and S. Moore, "Side-illuminated hollow-core optical fiber for atom guiding," Opt. Express 13(13), 4890-4895 (2005).
    [CrossRef] [PubMed]
  9. H. S. Pilloff, "Enhanced atom guiding in metal-coated, hollow-core optical fibers," Opt. Commun. 143(1-3), 25- 29 (1997).
    [CrossRef]
  10. T. Takekoshi and R. J. Knize, "Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber," Phys. Rev. Lett. 98(21), 210404 (2007), http://link.aps.org/abstract/PRL/v98/e210404.
    [CrossRef] [PubMed]
  11. Z. Wang, M. Dai, and J. Yin, "Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide," Opt. Express 13(21), 8406-8423 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8406.
    [CrossRef] [PubMed]
  12. M. E. Marhic and E. Garmire, "Low-order TE[sub 0q] operation of a CO[sub 2] laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38(10), 743-745 (1981), http://link.aip.org/link/?APL/38/743/1.
    [CrossRef]
  13. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Vectorial vortex mode transformation for a hollow waveguide using Pancharatnam-Berry phase optical elements," Opt. Lett. 31(22), 3252-3254 (2006), http://ol.osa.org/abstract.cfm?URI=ol-31-22-3252.
    [CrossRef] [PubMed]
  14. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures," Opt. Express 15(20), 13,404-13,414 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13404.
    [CrossRef]
  15. W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, "Selective excitation of the TE01 mode in hollow-glass waveguide using a subwavelength grating," Photon. Technol. Lett 17(7), 1441-1443 (2005).
    [CrossRef]
  16. K.-R. Sui, Y.-W. Shi, X.-L. Tang, X.-S. Zhu, K. Iwai, and M. Miyagi, "Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region," Opt. Lett. 33(4), 318-320 (2008), http://ol.osa.org/abstract.cfm?URI=ol-33-4-318.
    [CrossRef] [PubMed]
  17. Y. Matsuura, T. Abel, and J. A. Harrington, "Optical properties of small-bore hollow glass waveguides," Appl. Opt. 34(30), 6842-6847 (1995), http://ao.osa.org/abstract.cfm?URI=ao-34-30-6842.
    [CrossRef] [PubMed]
  18. T. Abel, J. Hirsch, and J. A. Harrington, "Hollow glass waveguides for broadband infrared transmission," Opt. Lett. 19(14), 1034-1036 (1994), http://ol.osa.org/abstract.cfm?URI=ol-19-14-1034.
    [CrossRef] [PubMed]
  19. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
    [CrossRef] [PubMed]
  20. M. Mohebbi, R. Fedosejevs, V. Gopal, and J. A. Harrington, "Silver-coated hollow-glass waveguide for applications at 800 nm," Appl. Opt. 41(33), 7031-7035 (2002), http://ao.osa.org/abstract.cfm?URI=ao-41-33-7031.
    [CrossRef] [PubMed]
  21. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
  22. N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. Atom. Mol. Opt. Phys. 48, 99 (2002).
    [CrossRef]
  23. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, "Optical dipole traps for neutral atoms," Adv. Atom. Mol. Opt. Phys. 42, 95 (2000).
    [CrossRef]
  24. M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Faraday spectroscopy of atoms confined in a dark optical trap," Phys. Rev. A 77(6), 063417 (2008). http://link.aps.org/abstract/PRA/v77/e063417.
    [CrossRef]
  25. M. Bashkansky, D. Park, and F. K. Fatemi, "Azimuthally and radially polarized light with a nematic SLM," Opt. Express 18(1), 212-217 (2010).
    [CrossRef]
  26. R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
    [CrossRef]
  27. O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
    [CrossRef]
  28. K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, "Enhancing the stability and biological Functionalities of quantum dots via compact multifunctional ligands," J. Am. Chem. Soc. 129, 13987-13996 (2007).
    [CrossRef] [PubMed]
  29. Z. J. Wang, S. L. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," Proc. Natl. Acad. Sci. USA 100, 8638-8643 (2003).
    [CrossRef] [PubMed]
  30. S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Cold-atom confinement in an all-optical dark ring trap," Phys. Rev. A 76(6), 061404 (2007).
    [CrossRef]

2010 (1)

2009 (2)

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (4)

K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, "Enhancing the stability and biological Functionalities of quantum dots via compact multifunctional ligands," J. Am. Chem. Soc. 129, 13987-13996 (2007).
[CrossRef] [PubMed]

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Cold-atom confinement in an all-optical dark ring trap," Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

T. Takekoshi and R. J. Knize, "Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber," Phys. Rev. Lett. 98(21), 210404 (2007), http://link.aps.org/abstract/PRL/v98/e210404.
[CrossRef] [PubMed]

Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures," Opt. Express 15(20), 13,404-13,414 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13404.
[CrossRef]

2006 (1)

2005 (3)

2003 (2)

Z. J. Wang, S. L. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," Proc. Natl. Acad. Sci. USA 100, 8638-8643 (2003).
[CrossRef] [PubMed]

O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
[CrossRef]

2002 (3)

N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. Atom. Mol. Opt. Phys. 48, 99 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

M. Mohebbi, R. Fedosejevs, V. Gopal, and J. A. Harrington, "Silver-coated hollow-glass waveguide for applications at 800 nm," Appl. Opt. 41(33), 7031-7035 (2002), http://ao.osa.org/abstract.cfm?URI=ao-41-33-7031.
[CrossRef] [PubMed]

2000 (3)

D. M¨uller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, "Guiding laser-cooled atoms in hollow-core fibers," Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

T. L. Gustavson, A. Landragin, and M. A. Kasevich, "Rotation sensing with a dual atom-interferometer Sagnac gyroscope" Class. Quantum. Grav. 17, 2385-2398 (2000).
[CrossRef]

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, "Optical dipole traps for neutral atoms," Adv. Atom. Mol. Opt. Phys. 42, 95 (2000).
[CrossRef]

1998 (1)

K. Dholakia, "Atom Hosepipes," Contemporary Phys. 39, 351-369 (1998).
[CrossRef]

1997 (1)

H. S. Pilloff, "Enhanced atom guiding in metal-coated, hollow-core optical fibers," Opt. Commun. 143(1-3), 25- 29 (1997).
[CrossRef]

1996 (2)

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, "Evanescent-wave guiding of atoms in hollow optical fibers," Phys. Rev. A 53(2), 648-651 (1996).
[CrossRef] [PubMed]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett. 76(24), 4500-4503 (1996).
[CrossRef] [PubMed]

1995 (2)

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, "Laser-Guided Atoms in Hollow-Core Optical Fibers," Phys. Rev. Lett. 75(18), 3253-3256 (1995).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, and J. A. Harrington, "Optical properties of small-bore hollow glass waveguides," Appl. Opt. 34(30), 6842-6847 (1995), http://ao.osa.org/abstract.cfm?URI=ao-34-30-6842.
[CrossRef] [PubMed]

1994 (1)

1981 (1)

M. E. Marhic and E. Garmire, "Low-order TE[sub 0q] operation of a CO[sub 2] laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38(10), 743-745 (1981), http://link.aip.org/link/?APL/38/743/1.
[CrossRef]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).

Abel, T.

Abraham, E. R. I.

D. M¨uller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, "Guiding laser-cooled atoms in hollow-core fibers," Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

Anderson, D. Z.

D. M¨uller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, "Guiding laser-cooled atoms in hollow-core fibers," Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, "Evanescent-wave guiding of atoms in hollow optical fibers," Phys. Rev. A 53(2), 648-651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, "Laser-Guided Atoms in Hollow-Core Optical Fibers," Phys. Rev. Lett. 75(18), 3253-3256 (1995).
[CrossRef] [PubMed]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Bashkansky, M.

M. Bashkansky, D. Park, and F. K. Fatemi, "Azimuthally and radially polarized light with a nematic SLM," Opt. Express 18(1), 212-217 (2010).
[CrossRef]

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Faraday spectroscopy of atoms confined in a dark optical trap," Phys. Rev. A 77(6), 063417 (2008). http://link.aps.org/abstract/PRA/v77/e063417.
[CrossRef]

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Cold-atom confinement in an all-optical dark ring trap," Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

F. K. Fatemi, M. Bashkansky, and S. Moore, "Side-illuminated hollow-core optical fiber for atom guiding," Opt. Express 13(13), 4890-4895 (2005).
[CrossRef] [PubMed]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Bicknell, R.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Biener, G.

Cabt-Deliry, E.

O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
[CrossRef]

Chehimi, M.M.

O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
[CrossRef]

Cornell, E. A.

D. M¨uller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, "Guiding laser-cooled atoms in hollow-core fibers," Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, "Evanescent-wave guiding of atoms in hollow optical fibers," Phys. Rev. A 53(2), 648-651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, "Laser-Guided Atoms in Hollow-Core Optical Fibers," Phys. Rev. Lett. 75(18), 3253-3256 (1995).
[CrossRef] [PubMed]

Dai, M.

Davidson, N.

N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. Atom. Mol. Opt. Phys. 48, 99 (2002).
[CrossRef]

Delehanty, J. B.

K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, "Enhancing the stability and biological Functionalities of quantum dots via compact multifunctional ligands," J. Am. Chem. Soc. 129, 13987-13996 (2007).
[CrossRef] [PubMed]

Dholakia, K.

K. Dholakia, "Atom Hosepipes," Contemporary Phys. 39, 351-369 (1998).
[CrossRef]

Donley, E. A.

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, "Evanescent-wave guiding of atoms in hollow optical fibers," Phys. Rev. A 53(2), 648-651 (1996).
[CrossRef] [PubMed]

Du, H.

Z. J. Wang, S. L. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," Proc. Natl. Acad. Sci. USA 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Fatemi, F. K.

M. Bashkansky, D. Park, and F. K. Fatemi, "Azimuthally and radially polarized light with a nematic SLM," Opt. Express 18(1), 212-217 (2010).
[CrossRef]

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Faraday spectroscopy of atoms confined in a dark optical trap," Phys. Rev. A 77(6), 063417 (2008). http://link.aps.org/abstract/PRA/v77/e063417.
[CrossRef]

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Cold-atom confinement in an all-optical dark ring trap," Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

F. K. Fatemi, M. Bashkansky, and S. Moore, "Side-illuminated hollow-core optical fiber for atom guiding," Opt. Express 13(13), 4890-4895 (2005).
[CrossRef] [PubMed]

Fedosejevs, R.

Felidj, N.

O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
[CrossRef]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Friedman, N.

N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. Atom. Mol. Opt. Phys. 48, 99 (2002).
[CrossRef]

Garmire, E.

M. E. Marhic and E. Garmire, "Low-order TE[sub 0q] operation of a CO[sub 2] laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38(10), 743-745 (1981), http://link.aip.org/link/?APL/38/743/1.
[CrossRef]

Gopal, V.

Greaves, S. J.

O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
[CrossRef]

Grimm, R.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, "Optical dipole traps for neutral atoms," Adv. Atom. Mol. Opt. Phys. 42, 95 (2000).
[CrossRef]

Gustavson, T. L.

T. L. Gustavson, A. Landragin, and M. A. Kasevich, "Rotation sensing with a dual atom-interferometer Sagnac gyroscope" Class. Quantum. Grav. 17, 2385-2398 (2000).
[CrossRef]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Harrington, J. A.

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Hasman, E.

Hirsch, J.

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Ito, H.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett. 76(24), 4500-4503 (1996).
[CrossRef] [PubMed]

Iwai, K.

Jhe, W.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett. 76(24), 4500-4503 (1996).
[CrossRef] [PubMed]

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Johnson, E. G.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, "Selective excitation of the TE01 mode in hollow-glass waveguide using a subwavelength grating," Photon. Technol. Lett 17(7), 1441-1443 (2005).
[CrossRef]

Kaplan, A.

N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. Atom. Mol. Opt. Phys. 48, 99 (2002).
[CrossRef]

Kasevich, M. A.

T. L. Gustavson, A. Landragin, and M. A. Kasevich, "Rotation sensing with a dual atom-interferometer Sagnac gyroscope" Class. Quantum. Grav. 17, 2385-2398 (2000).
[CrossRef]

King, L.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Kleiner, V.

Knize, R. J.

T. Takekoshi and R. J. Knize, "Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber," Phys. Rev. Lett. 98(21), 210404 (2007), http://link.aps.org/abstract/PRL/v98/e210404.
[CrossRef] [PubMed]

Kornilovitch, P.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Krauss, T. D.

Z. J. Wang, S. L. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," Proc. Natl. Acad. Sci. USA 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Landragin, A.

T. L. Gustavson, A. Landragin, and M. A. Kasevich, "Rotation sensing with a dual atom-interferometer Sagnac gyroscope" Class. Quantum. Grav. 17, 2385-2398 (2000).
[CrossRef]

Lee, K. I.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett. 76(24), 4500-4503 (1996).
[CrossRef] [PubMed]

Lerner, S.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

M¨uller, D.

D. M¨uller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, "Guiding laser-cooled atoms in hollow-core fibers," Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).

Marhic, M. E.

M. E. Marhic and E. Garmire, "Low-order TE[sub 0q] operation of a CO[sub 2] laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38(10), 743-745 (1981), http://link.aip.org/link/?APL/38/743/1.
[CrossRef]

Matsuura, Y.

Mattoussi, H.

K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, "Enhancing the stability and biological Functionalities of quantum dots via compact multifunctional ligands," J. Am. Chem. Soc. 129, 13987-13996 (2007).
[CrossRef] [PubMed]

Medintz, I. L.

K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, "Enhancing the stability and biological Functionalities of quantum dots via compact multifunctional ligands," J. Am. Chem. Soc. 129, 13987-13996 (2007).
[CrossRef] [PubMed]

Mehta, A.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, "Selective excitation of the TE01 mode in hollow-glass waveguide using a subwavelength grating," Photon. Technol. Lett 17(7), 1441-1443 (2005).
[CrossRef]

Meyer, N.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Miyagi, M.

Mohammed, W. S.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, "Selective excitation of the TE01 mode in hollow-glass waveguide using a subwavelength grating," Photon. Technol. Lett 17(7), 1441-1443 (2005).
[CrossRef]

Mohebbi, M.

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, "Laser-Guided Atoms in Hollow-Core Optical Fibers," Phys. Rev. Lett. 75(18), 3253-3256 (1995).
[CrossRef] [PubMed]

Moore, S.

Nakata, T.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett. 76(24), 4500-4503 (1996).
[CrossRef] [PubMed]

Niv, A.

Ohtsu, M.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett. 76(24), 4500-4503 (1996).
[CrossRef] [PubMed]

Olson, S. E.

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Cold-atom confinement in an all-optical dark ring trap," Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

Otis, C. E.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, "Optical dipole traps for neutral atoms," Adv. Atom. Mol. Opt. Phys. 42, 95 (2000).
[CrossRef]

Pan, S. L.

Z. J. Wang, S. L. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," Proc. Natl. Acad. Sci. USA 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Park, D.

Perruchot, C.

O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
[CrossRef]

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Pilloff, H. S.

H. S. Pilloff, "Enhanced atom guiding in metal-coated, hollow-core optical fibers," Opt. Commun. 143(1-3), 25- 29 (1997).
[CrossRef]

Pitchumani, M.

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, "Selective excitation of the TE01 mode in hollow-glass waveguide using a subwavelength grating," Photon. Technol. Lett 17(7), 1441-1443 (2005).
[CrossRef]

Pons, T.

K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, "Enhancing the stability and biological Functionalities of quantum dots via compact multifunctional ligands," J. Am. Chem. Soc. 129, 13987-13996 (2007).
[CrossRef] [PubMed]

Renn, M. J.

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, "Evanescent-wave guiding of atoms in hollow optical fibers," Phys. Rev. A 53(2), 648-651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, "Laser-Guided Atoms in Hollow-Core Optical Fibers," Phys. Rev. Lett. 75(18), 3253-3256 (1995).
[CrossRef] [PubMed]

Rothberg, L. J.

Z. J. Wang, S. L. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," Proc. Natl. Acad. Sci. USA 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Sakaki, K.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett. 76(24), 4500-4503 (1996).
[CrossRef] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).

Seals, L.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Seitz, O.

O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
[CrossRef]

Shi, Y.-W.

Sui, K.-R.

Susumu, K.

K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, "Enhancing the stability and biological Functionalities of quantum dots via compact multifunctional ligands," J. Am. Chem. Soc. 129, 13987-13996 (2007).
[CrossRef] [PubMed]

Takekoshi, T.

T. Takekoshi and R. J. Knize, "Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber," Phys. Rev. Lett. 98(21), 210404 (2007), http://link.aps.org/abstract/PRL/v98/e210404.
[CrossRef] [PubMed]

Tang, X.-L.

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Terraciano, M. L.

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Faraday spectroscopy of atoms confined in a dark optical trap," Phys. Rev. A 77(6), 063417 (2008). http://link.aps.org/abstract/PRA/v77/e063417.
[CrossRef]

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Cold-atom confinement in an all-optical dark ring trap," Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

Truong, S.

O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
[CrossRef]

Uyeda, H. T.

K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, "Enhancing the stability and biological Functionalities of quantum dots via compact multifunctional ligands," J. Am. Chem. Soc. 129, 13987-13996 (2007).
[CrossRef] [PubMed]

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, "Laser-Guided Atoms in Hollow-Core Optical Fibers," Phys. Rev. Lett. 75(18), 3253-3256 (1995).
[CrossRef] [PubMed]

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Wang, Z.

Wang, Z. J.

Z. J. Wang, S. L. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," Proc. Natl. Acad. Sci. USA 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Watts, J. F.

O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
[CrossRef]

Weidemuller, M.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, "Optical dipole traps for neutral atoms," Adv. Atom. Mol. Opt. Phys. 42, 95 (2000).
[CrossRef]

Wieman, C. E.

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, "Evanescent-wave guiding of atoms in hollow optical fibers," Phys. Rev. A 53(2), 648-651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, "Laser-Guided Atoms in Hollow-Core Optical Fibers," Phys. Rev. Lett. 75(18), 3253-3256 (1995).
[CrossRef] [PubMed]

Yeo, J.-S.

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Yin, J.

Yirmiyahu, Y.

Zhu, X.-S.

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Adv. Atom. Mol. Opt. Phys. (2)

N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. Atom. Mol. Opt. Phys. 48, 99 (2002).
[CrossRef]

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, "Optical dipole traps for neutral atoms," Adv. Atom. Mol. Opt. Phys. 42, 95 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

M. E. Marhic and E. Garmire, "Low-order TE[sub 0q] operation of a CO[sub 2] laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38(10), 743-745 (1981), http://link.aip.org/link/?APL/38/743/1.
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).

Class. Quantum. Grav. (1)

T. L. Gustavson, A. Landragin, and M. A. Kasevich, "Rotation sensing with a dual atom-interferometer Sagnac gyroscope" Class. Quantum. Grav. 17, 2385-2398 (2000).
[CrossRef]

Colloids and Surfaces A: Physicochem. Eng. Aspects (1)

O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003).
[CrossRef]

Contemporary Phys. (1)

K. Dholakia, "Atom Hosepipes," Contemporary Phys. 39, 351-369 (1998).
[CrossRef]

J. Am. Chem. Soc. (1)

K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, "Enhancing the stability and biological Functionalities of quantum dots via compact multifunctional ligands," J. Am. Chem. Soc. 129, 13987-13996 (2007).
[CrossRef] [PubMed]

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. S. Pilloff, "Enhanced atom guiding in metal-coated, hollow-core optical fibers," Opt. Commun. 143(1-3), 25- 29 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Photon. Technol. Lett (1)

W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, "Selective excitation of the TE01 mode in hollow-glass waveguide using a subwavelength grating," Photon. Technol. Lett 17(7), 1441-1443 (2005).
[CrossRef]

Phys. Rev. A (4)

D. M¨uller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, "Guiding laser-cooled atoms in hollow-core fibers," Phys. Rev. A 61(3), 033411 (2000).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, "Evanescent-wave guiding of atoms in hollow optical fibers," Phys. Rev. A 53(2), 648-651 (1996).
[CrossRef] [PubMed]

M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Faraday spectroscopy of atoms confined in a dark optical trap," Phys. Rev. A 77(6), 063417 (2008). http://link.aps.org/abstract/PRA/v77/e063417.
[CrossRef]

S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Cold-atom confinement in an all-optical dark ring trap," Phys. Rev. A 76(6), 061404 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett. 76(24), 4500-4503 (1996).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, "Laser-Guided Atoms in Hollow-Core Optical Fibers," Phys. Rev. Lett. 75(18), 3253-3256 (1995).
[CrossRef] [PubMed]

T. Takekoshi and R. J. Knize, "Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber," Phys. Rev. Lett. 98(21), 210404 (2007), http://link.aps.org/abstract/PRL/v98/e210404.
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

Z. J. Wang, S. L. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," Proc. Natl. Acad. Sci. USA 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schemes for atom guiding in hollow fibers. a) Red-detuned guiding using fundamental EH11 mode. b) Blue-detuned guiding using evanescent fields. c) Blue-detuned guiding using the TE01, azimuthally-polarized beam.

Fig. 2.
Fig. 2.

Beam profiles for TE01 (blue) and EH11 (red) modes, along with harmonic fits to both. This is for a 50 micron core diameter fiber with 1 mW optical power coupled in. The potential energy axis is in units of the Doppler temperature, TD = Γ/(2kB ) for 87Rb for a detuning of 1 nm.

Fig. 3.
Fig. 3.

Setup for shaping a Gaussian laser beam into a TE01 beam. A beam polarized at 45 degrees has the y-component phase shifted by p in two quadrants. A subsequent p phase step acting on both polarization components on the bottom half of the beam results in a quadrant approximation to an azimuthally polarized beam.

Fig. 4.
Fig. 4.

a) Spatial filtering configuration for purifying TE01 modes. b) Overlap integrals and power transmitted through the spatial filtering configuration of (a).

Fig. 5.
Fig. 5.

Top panel: Input and output TE01 mode images for coupling into 11.0 cm long, 50 micron diameter fiber. Output images are also shown after passing through a polarizer with transmission axis labeled by the arrows. The interferogram with vertically polarized light shows that the left and right lobes are pi out of phase. Bottom: Cross sections for the input beam and the 3.0 cm and 8.0 cm fiber sections.

Fig. 6.
Fig. 6.

a) AFM image of a silvered glass. b) Results for the 12.3-cm-long, 50μm-diameter silver-coated fiber. The output polarization profiles are shown.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E TE 01 ( ρ ) = J 1 ( 3.832 ρ a ) θ ̂
I ( z ) = I 0 exp ( 2 αz )
α = ( u nm 2 π ) 2 λ 2 a 3 Re ( 1 ν 2 1 )
α = ( u nm 2 π ) 2 λ 2 a 3 Re ( 0.5 ( ν 2 + 1 ) ν 2 1 )
U ( r ) = h ̄ Γ I ( r ) 24 I s ( Γ Δ + Δ LS + 2 Γ Δ )
E TE 01 in ( ρ ) = E 0 exp ( ρ 2 w 0 2 ) ( sgn ( y ) x ̂ sgn ( x ) y ̂ )
A = E TE 01 in × E TE 01 * dA
A = C 1 C 2 0 J 1 ( 3.83 ρ a ) exp ( ρ 2 ω 0 2 ) ρdρ 0 π sin ( θ )

Metrics