Abstract

Modal characteristics of the THz pipe waveguide, which is a thin pipe consisting of a large air core and a thin dielectric layer with uniform but low index, are investigated. Modal indices and attenuation constants are calculated for various core diameters, cladding thicknesses, and cladding refractive indices. Numerical results reveal that the guiding mechanism of the leaky core modes, which transmit most of the power in the air-core region, is that of the antiresonant reflecting guiding. Moreover, modal patterns including modal intensity distributions and electric field vector distributions are shown for the fundamental and higher order modes. Experiments using time-domain spectroscopy with PMMA pipes also confirm the antiresonant reflecting guiding mechanism.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  2. D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
    [CrossRef]
  3. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
    [CrossRef]
  4. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [CrossRef] [PubMed]
  5. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  6. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
    [CrossRef]
  7. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
    [CrossRef]
  8. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Lett. 43(No. 2B), L317–L319 (2004).
    [CrossRef]
  9. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  10. H.-W. Chen, C.-M. Chiu, C.-H. Lai, J.-L. Kuo, P.-J. Chiang, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Subwavelength dielectric-fiber-based THz coupler,” J. Lightwave Technol. 27(11), 1489–1495 (2009).
    [CrossRef]
  11. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-21-5263 .
    [CrossRef] [PubMed]
  12. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
    [CrossRef] [PubMed]
  13. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
    [CrossRef]
  14. T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23(8), 2469–2473 (2005).
    [CrossRef]
  15. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
    [CrossRef]
  16. R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” Photon. Technol. Lett. 19(12), 910–912 (2007).
    [CrossRef]
  17. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
    [CrossRef]
  18. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-16-9-6340 .
    [CrossRef] [PubMed]
  19. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [CrossRef] [PubMed]
  20. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-21-9944 .
    [CrossRef] [PubMed]
  21. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [CrossRef]
  22. M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28(6), 536–541 (1980).
    [CrossRef]
  23. Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10(12), 488–492 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-10-12-488 .
    [PubMed]
  24. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [CrossRef] [PubMed]
  25. T. P. White, R. C. McPhedran, C. Martijn de Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27(22), 1977–1979 (2002).
    [CrossRef] [PubMed]
  26. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-10-1243 .
    [PubMed]
  27. C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12(25), 6165–6177 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-25-6165 .
    [CrossRef] [PubMed]
  28. D. Grischkowsky, S. R. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [CrossRef]
  29. P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulse from bias semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
    [CrossRef]
  30. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  31. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17(12), 1997–2034 (1996).
    [CrossRef]
  32. M. Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
    [CrossRef] [PubMed]

2009 (2)

2008 (2)

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-16-9-6340 .
[CrossRef] [PubMed]

2007 (6)

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[CrossRef]

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” Photon. Technol. Lett. 19(12), 910–912 (2007).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[CrossRef]

2006 (2)

2005 (1)

2004 (4)

2003 (1)

2002 (4)

2001 (1)

2000 (2)

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

1996 (2)

P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulse from bias semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
[CrossRef]

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17(12), 1997–2034 (1996).
[CrossRef]

1990 (1)

1989 (1)

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

1980 (1)

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28(6), 536–541 (1980).
[CrossRef]

Abbott, D.

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[CrossRef]

Abeeluck, A. K.

Bai, X.-Z.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” Photon. Technol. Lett. 19(12), 910–912 (2007).
[CrossRef]

Bowden, B.

Chang, H.-C.

Chen, H.-W.

Chen, L.-J.

Chiang, P.-J.

Chiu, C.-M.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

de Sterke, C. M.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Dunn, S. C.

Dupuis, A.

Eggleton, B. J.

Exter, M.

Fattinger, Ch.

Gallot, G.

George, R.

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Lett. 43(No. 2B), L317–L319 (2004).
[CrossRef]

Grischkowsky, D.

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Harrington, J. A.

Hassani, A.

Headley, C.

Hidaka, T.

Hsueh, Y.-C.

Huang, Y.-J.

Hwang, Y.-J.

Ichikawa, S.

Ito, H.

Ito, T.

Jacobsen, R. H.

Jamison, S. P.

Kao, T.-F.

Kasahara, R.

Katagiri, T.

Keiding, S. R.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Kuo, J.-L.

Kurz, H.

Lai, C.-H.

Lamb, J. W.

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17(12), 1997–2034 (1996).
[CrossRef]

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

Litchinitser, N. M.

Lu, J.-Y.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[CrossRef] [PubMed]

Marchewka, A.

Martijn de Sterke, C.

Matsuura, Y.

McGowan, R. W.

McPhedran, R. C.

Mendis, R.

Minamide, H.

Mitrofanov, O.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Miyagi, M.

Mueller, E.

Nagel, M.

Nishida, S.

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28(6), 536–541 (1980).
[CrossRef]

Nishizawa, J.-I.

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Lett. 43(No. 2B), L317–L319 (2004).
[CrossRef]

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Pedersen, P.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Lett. 43(No. 2B), L317–L319 (2004).
[CrossRef]

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Lett. 43(No. 2B), L317–L319 (2004).
[CrossRef]

Skorobogatiy, M.

Sun, C.-K.

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Lett. 43(No. 2B), L317–L319 (2004).
[CrossRef]

Tamura, K.

Tian, Z.-G.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” Photon. Technol. Lett. 19(12), 910–912 (2007).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Uhd Jepsen, P.

Usner, B.

van Exter, M.

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

White, T. P.

Wu, C.-Q.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” Photon. Technol. Lett. 19(12), 910–912 (2007).
[CrossRef]

Yu, C.-P.

Yu, R.-J.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” Photon. Technol. Lett. 19(12), 910–912 (2007).
[CrossRef]

Zhang, B.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” Photon. Technol. Lett. 19(12), 910–912 (2007).
[CrossRef]

Zhang, X.-C.

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[CrossRef]

Zhang, Y.-Q.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” Photon. Technol. Lett. 19(12), 910–912 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28(6), 536–541 (1980).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17(12), 1997–2034 (1996).
[CrossRef]

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Lett. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Lett. 43(No. 2B), L317–L319 (2004).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express (6)

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-21-5263 .
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-16-9-6340 .
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-10-1243 .
[PubMed]

C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12(25), 6165–6177 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-25-6165 .
[CrossRef] [PubMed]

Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10(12), 488–492 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-10-12-488 .
[PubMed]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-21-9944 .
[CrossRef] [PubMed]

Opt. Lett. (7)

Photon. Technol. Lett. (1)

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” Photon. Technol. Lett. 19(12), 910–912 (2007).
[CrossRef]

Proc. IEEE (1)

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[CrossRef]

Other (1)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Cross-section of the pipe waveguide, where n 1 = 1 (air). (b) The cladding can be viewed as a Fabry-Perot etalon.

Fig. 2
Fig. 2

(a) Modal indices and (b) attenuation constants of the fundamental core mode of the pipe waveguide for D = 7 mm and 9 mm.

Fig. 3
Fig. 3

(a) Modal indices and (b) attenuation constants of the fundamental core mode of the pipe waveguide with for t = 0.5 mm and 1.0 mm.

Fig. 4
Fig. 4

(a) Modal indices and (b) attenuation constants of the fundamental core mode of the pipe waveguide for n 2 = 1.4 and 1.6.

Fig. 5
Fig. 5

(a) Modal indices and (b) attenuation constants of the fundamental core mode of the pipe waveguide obtained with and without material absorption.

Fig. 6
Fig. 6

The loci of β/k 0 for the first twelve lowest modes of the pipe waveguide at 380 GHz.

Fig. 7
Fig. 7

(a) Modal intensity distributions and (b) electric field vector distributions of the first twelve lowest modes of the pipe waveguide at 380GHz.

Fig. 8
Fig. 8

(a) Modal indices and (b) attenuation constants of the fundamental mode and the first set of higher order modes of the pipe waveguide.

Fig. 9
Fig. 9

Experimental setup for measuring the transmission spectra of the pipe waveguides.

Fig. 10
Fig. 10

Normalized transmission spectra (solid lines) of the PMMA pipes with (a) D = 8 mm and t = 1.0 mm and (b) D = 4 mm and t = 2.0 mm. Resonant frequencies of the cladding (dotted lines) obtained from Eq. (2) are also shown for comparison. The arrows correspond to the frequencies of the absorption peaks of water vapor.

Fig. 11
Fig. 11

Longitudinal cross-section of the pipe waveguide.

Fig. 12
Fig. 12

Comparison of the attenuation constants of the pipe waveguide obtained directly by the FDFD mode solver (denoted as “FDFD”) and by the Fabry-Perot-based procedure (denoted as “FP”). (a) The fundamental mode. (b) The first set of higher order modes.

Fig. 13
Fig. 13

Attenuation constants of the pipe waveguide. Three types of conditions are assumed to distinguish the contributions to the attenuation constants from the core diameter D and the incident angle θ 1.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

f m = m c 2 n 2 t cos θ 2 ,      m = 1 , 2 , 3 ,
f m = m c 2 n 1 t ( n 2 / n 1 ) 2 1 , m = 1 , 2 , 3 ,
Δ f = f m + 1 f m = c 2 n 1 t ( n 2 / n 1 ) 2 1 .
θ 1 = sin 1 n e f f n 1 .
r T E = 1 sin 2 θ 1 1 sin 2 θ 1 n 1 2 n 2 2 n 2 n 1 1 sin 2 θ 1 + 1 sin 2 θ 1 n 1 2 n 2 2 n 2 n 1
r T M = 1 sin 2 θ 1 1 sin 2 θ 1 n 1 2 n 2 2 n 1 n 2 1 sin 2 θ 1 + 1 sin 2 θ 1 n 1 2 n 2 2 n 1 n 2 .
R T E = 1 ( 1 r T E 2 ) 2 ( 1 r T E 2 ) 2 + 4 r T E 2 sin 2 ( ω n 2 t cos θ 2 c )
P z = L P z = 0 = e α L = R N
α T E = ln R T E D tan θ 1
α T M = ln R T M D tan θ 1 .
α H E = α E H = α T E + α T M 2 .

Metrics