Abstract

A multi-point laser Doppler velocimeter (LDV) using the arrayed waveguide gratings (AWGs) with small wavelength sensitivity (less than 1/10 of that for a conventional LDV without the AWGs) is proposed, in which velocities at different points in the depth direction can be simultaneously measured with compact optical systems. The design and characteristics of the proposed LDV are investigated with the model using the grating equation of the AWGs. From our simulation results, the wavelength sensitivity for multiple measured points can be reduced to less than 1/10 of that for a conventional LDV without an AWG.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hachiga, N. Furuichi, J. Mimatsu, K. Hishida, and M. Kumada, “Development of a multi-point LDV by using semiconductor laser with FFT-based multi-channel signal processing,” Exp. Fluids 24(1), 70–76 (1998).
    [CrossRef]
  2. E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245(1-6), 309–313 (2005).
    [CrossRef]
  3. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer – Verlag Berlin Heidelberg, 2003), Chap. 7.
  4. M. Haruna, K. Kasazumi, and H. Nishihara, “Integrated-optic differential laser Doppler velocimeter with a micro Fresnel lens array,” in Proceedings of Conf. Integ. & Guided-Wave Opt. (IGWO ’89), MBB6.
  5. T. Ito, R. Sawada, and E. Higurashi, “Integrated microlaser Doppler velocimeter,” J. Lightwave Technol. 17(1), 30–34 (1999).
    [CrossRef]
  6. K. Maru and Y. Fujii, “Integrated wavelength-insensitive differential laser Doppler velocimeter using planar lightwave circuit,” J. Lightwave Technol. 27(22), 5078–5083 (2009).
    [CrossRef]
  7. J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, “Diffractive beam splitter for laser Doppler velocimetry,” Opt. Lett. 17(17), 1240–1242 (1992).
    [CrossRef] [PubMed]
  8. R. Sawada, K. Hane, and E. Higurashi, Optical micro electro mechanical systems (Ohmsha, Tokyo, 2002), Section 5.2. (in Japanese)
  9. K. Maru and Y. Fujii, “Wavelength-insensitive laser Doppler velocimeter using beam position shift induced by Mach-Zehnder interferometers,” Opt. Express 17(20), 17441–17449 (2009).
    [CrossRef] [PubMed]
  10. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
    [CrossRef]
  11. H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
    [CrossRef]
  12. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexer with higher index-contrast silica-based PLCs,” J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
    [CrossRef]
  13. H. Uetsuka, “AWG technologies for dense WDM applications,” J. Sel. Top. Quantum Electron. 10(2), 393–402 (2004).
    [CrossRef]
  14. K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, “2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core,” IEEE Photon. Technol. Lett. 17(11), 2325–2327 (2005).
    [CrossRef]
  15. C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24(12), 4763–4789 (2006).
    [CrossRef]
  16. K. Maru, T. Mizumoto, and H. Uetsuka, “Modeling of multi-input arrayed waveguide grating and its application to design of flat-passband response using cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(2), 544–555 (2007).
    [CrossRef]
  17. K. Maru, T. Mizumoto, and H. Uetsuka, “Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(8), 2187–2197 (2007).
    [CrossRef]
  18. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, San Francisco, 1968), Chap. 4–5.
  19. C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
    [CrossRef]
  20. I. Kaminow, and T. Li, Optical Fiber Telecommunications IVA (Academic Press, San Diego, 2002), pp. 424–427.
  21. M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
    [CrossRef]

2009

2007

2006

2005

K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, “2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core,” IEEE Photon. Technol. Lett. 17(11), 2325–2327 (2005).
[CrossRef]

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245(1-6), 309–313 (2005).
[CrossRef]

2004

H. Uetsuka, “AWG technologies for dense WDM applications,” J. Sel. Top. Quantum Electron. 10(2), 393–402 (2004).
[CrossRef]

2002

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexer with higher index-contrast silica-based PLCs,” J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

1999

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

T. Ito, R. Sawada, and E. Higurashi, “Integrated microlaser Doppler velocimeter,” J. Lightwave Technol. 17(1), 30–34 (1999).
[CrossRef]

1998

T. Hachiga, N. Furuichi, J. Mimatsu, K. Hishida, and M. Kumada, “Development of a multi-point LDV by using semiconductor laser with FFT-based multi-channel signal processing,” Exp. Fluids 24(1), 70–76 (1998).
[CrossRef]

1996

M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

1994

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
[CrossRef]

1992

1990

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
[CrossRef]

Abe, Y.

K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, “2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core,” IEEE Photon. Technol. Lett. 17(11), 2325–2327 (2005).
[CrossRef]

Cappuzzo, M.

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Chicharo, J. F.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245(1-6), 309–313 (2005).
[CrossRef]

Doerr, C. R.

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24(12), 4763–4789 (2006).
[CrossRef]

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Durst, F.

Fujii, Y.

Furuichi, N.

T. Hachiga, N. Furuichi, J. Mimatsu, K. Hishida, and M. Kumada, “Development of a multi-point LDV by using semiconductor laser with FFT-based multi-channel signal processing,” Exp. Fluids 24(1), 70–76 (1998).
[CrossRef]

Gates, J.

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Gomez, L.

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Hachiga, T.

T. Hachiga, N. Furuichi, J. Mimatsu, K. Hishida, and M. Kumada, “Development of a multi-point LDV by using semiconductor laser with FFT-based multi-channel signal processing,” Exp. Fluids 24(1), 70–76 (1998).
[CrossRef]

Hibino, Y.

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexer with higher index-contrast silica-based PLCs,” J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

Higurashi, E.

Himi, S.

K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, “2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core,” IEEE Photon. Technol. Lett. 17(11), 2325–2327 (2005).
[CrossRef]

Hishida, K.

T. Hachiga, N. Furuichi, J. Mimatsu, K. Hishida, and M. Kumada, “Development of a multi-point LDV by using semiconductor laser with FFT-based multi-channel signal processing,” Exp. Fluids 24(1), 70–76 (1998).
[CrossRef]

Ishikawa, H.

K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, “2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core,” IEEE Photon. Technol. Lett. 17(11), 2325–2327 (2005).
[CrossRef]

Ito, M.

K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, “2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core,” IEEE Photon. Technol. Lett. 17(11), 2325–2327 (2005).
[CrossRef]

Ito, T.

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
[CrossRef]

Kumada, M.

T. Hachiga, N. Furuichi, J. Mimatsu, K. Hishida, and M. Kumada, “Development of a multi-point LDV by using semiconductor laser with FFT-based multi-channel signal processing,” Exp. Fluids 24(1), 70–76 (1998).
[CrossRef]

Laskowski, E.

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Li, E. B.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245(1-6), 309–313 (2005).
[CrossRef]

Maru, K.

Mimatsu, J.

T. Hachiga, N. Furuichi, J. Mimatsu, K. Hishida, and M. Kumada, “Development of a multi-point LDV by using semiconductor laser with FFT-based multi-channel signal processing,” Exp. Fluids 24(1), 70–76 (1998).
[CrossRef]

Mizumoto, T.

Nishi, I.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
[CrossRef]

Okamoto, K.

Paunescu, A.

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Sawada, R.

Schmidt, J.

Schwider, J.

Sheridan, J. T.

Smit, M. K.

M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Stork, W.

Streibl, N.

Stulz, L. W.

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Suzuki, S.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
[CrossRef]

Takahashi, H.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
[CrossRef]

Uetsuka, H.

K. Maru, T. Mizumoto, and H. Uetsuka, “Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(8), 2187–2197 (2007).
[CrossRef]

K. Maru, T. Mizumoto, and H. Uetsuka, “Modeling of multi-input arrayed waveguide grating and its application to design of flat-passband response using cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(2), 544–555 (2007).
[CrossRef]

K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, “2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core,” IEEE Photon. Technol. Lett. 17(11), 2325–2327 (2005).
[CrossRef]

H. Uetsuka, “AWG technologies for dense WDM applications,” J. Sel. Top. Quantum Electron. 10(2), 393–402 (2004).
[CrossRef]

van Dam, C.

M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Völkel, R.

Xi, J.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245(1-6), 309–313 (2005).
[CrossRef]

Yao, J. Q.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245(1-6), 309–313 (2005).
[CrossRef]

Yu, D. Y.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245(1-6), 309–313 (2005).
[CrossRef]

Exp. Fluids

T. Hachiga, N. Furuichi, J. Mimatsu, K. Hishida, and M. Kumada, “Development of a multi-point LDV by using semiconductor laser with FFT-based multi-channel signal processing,” Exp. Fluids 24(1), 70–76 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, “2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core,” IEEE Photon. Technol. Lett. 17(11), 2325–2327 (2005).
[CrossRef]

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

J. Lightwave Technol.

J. Sel. Top. Quantum Electron.

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexer with higher index-contrast silica-based PLCs,” J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

H. Uetsuka, “AWG technologies for dense WDM applications,” J. Sel. Top. Quantum Electron. 10(2), 393–402 (2004).
[CrossRef]

M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Opt. Commun.

E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245(1-6), 309–313 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
[CrossRef]

Other

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer – Verlag Berlin Heidelberg, 2003), Chap. 7.

M. Haruna, K. Kasazumi, and H. Nishihara, “Integrated-optic differential laser Doppler velocimeter with a micro Fresnel lens array,” in Proceedings of Conf. Integ. & Guided-Wave Opt. (IGWO ’89), MBB6.

J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, San Francisco, 1968), Chap. 4–5.

R. Sawada, K. Hane, and E. Higurashi, Optical micro electro mechanical systems (Ohmsha, Tokyo, 2002), Section 5.2. (in Japanese)

I. Kaminow, and T. Li, Optical Fiber Telecommunications IVA (Academic Press, San Diego, 2002), pp. 424–427.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical circuit of proposed multi-point differential LDV.

Fig. 2
Fig. 2

Schematic diagram of laser-side AWG.

Fig. 3
Fig. 3

Relation between array aperture angle ψout and relative extreme range ΔzB xAWG for various m. The relation between ψout and ΔzB xAWG under the condition of d = 10 μm is also plotted in the dotted line.

Fig. 4
Fig. 4

Relation between relative position of measured point zmeas xAWG and input wavelength λ for various ϕ. m = 2, d = 10 μm and ψout = 10.17°. The condition of angles ϕ and θ within ± ΔθB is indicated as the area within the dotted line.

Fig. 5
Fig. 5

Absolute value of deviation in FD/v due to wavelength deviation for m = 2, d = 10 μm and ψout = 10.17°. λn = 1.2, 1.3 and 1.4 μm. The deviation for a conventional differential LDV without an AWG is also plotted.

Tables (1)

Tables Icon

Table 1 Example of Parameters ϕ, λ, Lin and zmeas

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

2 π n s d λ ( sin θ + sin ϕ ) + 2 π n a Δ L λ = 2 π m ,
sin θ = m ( λ λ 0 ) n s d sin ϕ .
z m e a s = Δ x A W G 2 [ 1 tan ( ψ o u t + θ ) 1 tan ψ o u t ] .
F D = 2 v sin ( ψ o u t + θ ) λ ,
d θ d λ | λ = λ 1 = tan ( ψ o u t + θ 1 ) λ 1 ,
tan ( ψ o u t + θ 1 ) cos θ 1 = m λ 1 n s d .
Φ i n ( ξ ) = k ξ 2 2 ( 1 R i n o 1 R i n ) ,
R i n = L i n [ 1 + ( k w i n 2 2 L i n ) 2 ] .
1 R i n + 1 R o u t = 1 R i n o + 1 R o u t o .
R o u t = L o u t [ 1 + ( k w o u t 2 2 L o u t ) 2 ] .
1 L i n + 1 L o u t 1 R i n o + 1 R o u t o .
Δ θ B = λ 0 2 n s d .
Δ θ B = tan ( ψ o u t ) 2 m .

Metrics