Abstract

Thermo-optic and reactive mechanisms for label-free sensing of bio-particles are compared theoretically for Whispering Gallery Mode (WGM) resonators (sphere, toroid) formed from silica and stimulated into a first order equatorial mode. Although it has been expected that a thermo-optic mechanism should “greatly enhance” wavelength shift signals [A.M. Armani et al, Science 317, 783-787 (2007)] accompanying protein binding on a silica WGM cavity having high Q (108), for a combination of wavelength (680 nm), drive power (1 mW), and cavity size (43 μm radius), our calculations find no such enhancement. The possible reasons for this disparity are discussed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [CrossRef] [PubMed]
  2. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  3. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [CrossRef] [PubMed]
  4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  5. M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
    [CrossRef]
  6. D. Evanko, “Incredible shrinking optics,” Nat. Methods 4(9), 683 (2007).
    [CrossRef]
  7. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23(7), 1381–1389 (2006).
    [CrossRef]
  8. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
    [CrossRef] [PubMed]
  9. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
    [CrossRef] [PubMed]
  10. J. D. Jackson, Classical Electrodynamics, (3rd ed., John Wiley & Sons Inc., Hoboken, NJ, 1998), pp.154–156.
  11. J. V. Beck, K. D. Cole, A. Haji-Sheikh, and B. Litkouhi, Heat conduction using Green’s functions, (Hemisphere Publishing Corp., Washington, DC, 1992).
  12. S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “MicroParticle PhotoPhysics illuminates viral bio-sensing,” Faraday Discuss. 137, 65–83, discussion 99–113 (2007).
    [CrossRef] [PubMed]
  13. S. A. Wise, and R. A. Watters, “Bovine serum albumin (7% Solution) (SRM 927d),” NIST Gaithersburg, MD (2006).
  14. W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
    [CrossRef]
  15. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [CrossRef] [PubMed]

2009

2008

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[CrossRef] [PubMed]

2007

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “MicroParticle PhotoPhysics illuminates viral bio-sensing,” Faraday Discuss. 137, 65–83, discussion 99–113 (2007).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
[CrossRef]

D. Evanko, “Incredible shrinking optics,” Nat. Methods 4(9), 683 (2007).
[CrossRef]

2006

2004

2003

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[CrossRef] [PubMed]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Arnold, S.

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “MicroParticle PhotoPhysics illuminates viral bio-sensing,” Faraday Discuss. 137, 65–83, discussion 99–113 (2007).
[CrossRef] [PubMed]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23(7), 1381–1389 (2006).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[CrossRef] [PubMed]

Bjarklev, A.

Carlsen, A.

Evanko, D.

D. Evanko, “Incredible shrinking optics,” Nat. Methods 4(9), 683 (2007).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Folkenberg, J. R.

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Fromm, D. P.

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[CrossRef]

Hansen, T. P.

Hoiby, P. E.

Holler, S.

Jensen, J. B.

Keng, D.

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[CrossRef] [PubMed]

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “MicroParticle PhotoPhysics illuminates viral bio-sensing,” Faraday Discuss. 137, 65–83, discussion 99–113 (2007).
[CrossRef] [PubMed]

Khoshsima, M.

Kolchenko, V.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “MicroParticle PhotoPhysics illuminates viral bio-sensing,” Faraday Discuss. 137, 65–83, discussion 99–113 (2007).
[CrossRef] [PubMed]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Loncar, M.

M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
[CrossRef]

Moerner, W. E.

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[CrossRef]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Pedersen, L. H.

Ramjit, R.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “MicroParticle PhotoPhysics illuminates viral bio-sensing,” Faraday Discuss. 137, 65–83, discussion 99–113 (2007).
[CrossRef] [PubMed]

Riishede, J.

Shopova, S. I.

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Teraoka, I.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Vollmer, F.

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[CrossRef] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zurawsky, W.

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Faraday Discuss.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “MicroParticle PhotoPhysics illuminates viral bio-sensing,” Faraday Discuss. 137, 65–83, discussion 99–113 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Nat. Methods

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

D. Evanko, “Incredible shrinking optics,” Nat. Methods 4(9), 683 (2007).
[CrossRef]

Nat. Photonics

M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[CrossRef]

Science

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Other

J. D. Jackson, Classical Electrodynamics, (3rd ed., John Wiley & Sons Inc., Hoboken, NJ, 1998), pp.154–156.

J. V. Beck, K. D. Cole, A. Haji-Sheikh, and B. Litkouhi, Heat conduction using Green’s functions, (Hemisphere Publishing Corp., Washington, DC, 1992).

S. A. Wise, and R. A. Watters, “Bovine serum albumin (7% Solution) (SRM 927d),” NIST Gaithersburg, MD (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Heat source h at the surface of a microsphere. Through thermal conduction, the source establishes spatial distribution of temperature.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

h = 1 2 ω Im [ α ] | E 0 ( r a ) | 2 .
W m = P Q / ω ,
W m 1 2 ε 0 n s 2 | E 0 ( r ) | 2 d V ,
| E 0 ( r ) | 2 = c in [ j l ( n s k r ) ] 2 | Y l l ( r ^ ) | 2 ( r R ) ,
| E 0 ( r a ) | = | E 0 ( R x ^ ) | exp ( Γ a ) .
W m 1 2 c in ε 0 n s 2 0 R [ j l ( n s k r ) ] 2 r 2 d r .
| E 0 ( r a ) | 2 4 | Y l l ( x ^ ) | 2 exp ( 2 Γ a ) ε 0 ( n s 2 n m 2 ) R 3 W m .
h = 2 Im [ α / ε 0 ] | Y l l ( x ^ ) | 2 exp ( 2 Γ a ) ( n s 2 n m 2 ) R 3 P Q .
κ 2 T = h δ ( r r a ) ,
δ T = h 2 π ξ ( κ s + κ m ) .
ξ [ r 2 + ( R + a ) 2 2 r ( R + a ) sin θ cos ϕ ] 1 / 2 .
δ n = d n / d T π ξ ( κ s + κ m ) Im [ α / ε 0 ] P Q ( n s 2 n m 2 ) R 3 c in [ j l ( n s k R ) ] 2 | E 0 ( r a ) | 2 .
δ ω ω = δ ( [ n ( r ) ] 2 ) E ( r ) · E 0 * ( r ) d V 2 [ n ( r ) ] 2 | E 0 ( r ) | 2 d V .
N t = 2 n s δ n ( r ) | E 0 ( r ) | 2 d V .
N t = η I l R Im[ α / ε 0 ] | E 0 ( r a ) | 2 P Q ,
η 2 n s (d n / d T ) π ( n s 2 n m 2 ) ( κ s + κ m )
I l [ ψ l ( n s k R ) ] 2 0 R [ ψ l ( n s k r ) ] 2 d r d Ω ξ 1 | Y l l ( r ^ ) | 2 ,
N r = Re [ α / ε 0 ] | E 0 ( r a ) | 2 .
( δ ω ) t ( δ ω ) r = N t N r = η I l R Im[ α / ε 0 ] Re [ α / ε 0 ] P Q .

Metrics