Abstract

Laser-induced breakdown spectroscopy (LIBS) using double-pulse irradiation with Nd:YAG and CO2 lasers was applied to the analysis of a polystyrene film on a silicon substrate. An enhanced emission signal, compared to single-pulse LIBS using a Nd:YAG laser, was observed from atomic carbon, as well as enhanced molecular emission from C2 and CN. This double-pulse technique was further applied to 2,4,6-trinitrotoluene residues, and enhanced LIBS signals for both atomic carbon and molecular CN emission were observed; however, no molecular C2 emission was detected.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
    [CrossRef] [PubMed]
  2. F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
    [CrossRef]
  3. C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 1217–1224 (2005).
    [CrossRef]
  4. W. Schade, C. Bohling, K. Hohmann, and D. Scheel, “Laser-induced plasma spectroscopy for mine detection and verification,” Laser and Particle Beams 24(02), 241–247 (2006).
    [CrossRef]
  5. S. Singh, “Sensors--An effective approach for the detection of explosives,” J. Hazard. Mater. 144(1-2), 15–28 (2007).
    [CrossRef] [PubMed]
  6. Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16(8), 5332–5337 (2008).
    [CrossRef] [PubMed]
  7. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).
    [CrossRef] [PubMed]
  8. C. McEnnis, and J. B. Spicer, “Substrate-related effects on molecular and atomic emission in LIBS of explosives,” (2008), p. 695309.
  9. L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987-1994,” Microchem. J. 50(3), 218–234 (1994).
    [CrossRef]
  10. L. J. Radziemski, and D. A. Cremers, Laser-induced plasmas and applications (CRC Press, 1989).
  11. D. A. Cremers, and L. J. Radziemski, Handbook of laser-induced breakdown spectroscopy (John Wiley, 2006).
  12. B. C. Castle, K. Talabardon, B. W. Smith, and J. D. Winefordner, “Variables influencing the precision of laser-induced breakdown spectroscopy measurements,” Appl. Spectrosc. 52(5), 649–657 (1998).
    [CrossRef]
  13. J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78(1), 24–32 (2006).
    [CrossRef] [PubMed]
  14. E. H. Piepmeier and H. V. Malmstadt, “Q-switched laser energy absorption in the plume of an aluminum alloy,” Anal. Chem. 41(6), 700–707 (1969).
    [CrossRef]
  15. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54(9), 1270–1274 (2000).
    [CrossRef]
  16. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55(10), 1297–1303 (2001).
    [CrossRef]
  17. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
    [CrossRef]
  18. L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
    [CrossRef]
  19. A. Kuwako, Y. Uchida, and K. Maeda, “Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 42(30), 6052–6056 (2003).
    [CrossRef] [PubMed]
  20. J. Scaffidi, W. Pearman, M. Lawrence, J. C. Carter, B. W. Colston, and S. M. Angel, “Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43(27), 5243–5250 (2004).
    [CrossRef] [PubMed]
  21. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally-and time-resolved imaging,” Appl. Phys. B 80(4-5), 559–568 (2005).
    [CrossRef]
  22. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO(2) laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
    [CrossRef] [PubMed]
  23. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “LIBS plasma enhancement for standoff detection applications,” Proceedings of SPIE, the International Society for Optical Engineering (2008), pp. 695403–695403.
  24. A. Pal, R. D. Waterbury, E. L. Dottery, and D. K. Killinger, “Enhanced temperature and emission from a standoff 266 nm laser initiated LIBS plasma using a simultaneous 10.6 µm CO2 laser pulse,” Opt. Express 17(11), 8856–8870 (2009).
    [CrossRef] [PubMed]
  25. G. Galbács, V. Budavári, and Z. Geretovszky, “Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer,” J. Anal. At. Spectrom. 20(9), 974–980 (2005).
    [CrossRef]
  26. C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 59(7), 975–986 (2004).
    [CrossRef]
  27. P. Mora, “Theoretical model of absorption of laser light by a plasma,” Phys. Fluids 25(6), 1051 (1982).
    [CrossRef]
  28. Y. B. Zel'Dovich, Physics of shock waves and high-temperature hydrodynamic phenomena (Dover Publications, 2002).
  29. L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys., A Mater. Sci. Process. 69, 913–916 (1999).
  30. M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochimica Acta Part B: Atomic Spectroscopy (2007).
  31. M. Weidman, “Thermodynamic and spectroscopic properties of Nd:YAG-CO2 Double-Pulse Laser-Induced Iron Plasma,” Spectrochimica Acta Part B: Atomic Spectroscopy (2009).
  32. A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97(1), 243–248 (2009).
    [CrossRef]
  33. S. S. Harilal, R. C. Issac, C. V. Bindhu, P. Gopinath, V. P. N. Nampoori, and C. P. G. Vallabhan, “Time resolved study of CN band emission from plasma generated by laser irradiation of graphite,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(10), 1527–1536 (1997).
    [CrossRef]
  34. C. Vivien, J. Hermann, A. Pertone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D Appl. Phys. 31(10), 1263–1272 (1998).
    [CrossRef]
  35. A. A. Voevodin, J. G. Jones, J. S. Zabinski, and L. Hultman, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92(2), 724 (2002).
    [CrossRef]
  36. A. Portnov, S. Rosenwaks, and I. Bar, “Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air,” Appl. Opt. 42(15), 2835–2842 (2003).
    [CrossRef] [PubMed]
  37. J. E. Mentall and R. W. Nicholls, “Absolute band strengths for the C2 Swan system,” Proc. Phys. Soc. 86(4), 873–876 (1965).
    [CrossRef]
  38. L. L. Danylewych, and R. W. Nicholls, “Intensity Measurements and Transition Probabilities for Bands of the CN Violet (B2Σ+ - X2Σ+) Band System,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 557–573 (1978).
  39. R. Cohen, Y. Zeiri, E. Wurzberg, and R. Kosloff, “Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study,” J. Phys. Chem. A 111(43), 11074–11083 (2007).
    [CrossRef] [PubMed]

2009 (2)

A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97(1), 243–248 (2009).
[CrossRef]

A. Pal, R. D. Waterbury, E. L. Dottery, and D. K. Killinger, “Enhanced temperature and emission from a standoff 266 nm laser initiated LIBS plasma using a simultaneous 10.6 µm CO2 laser pulse,” Opt. Express 17(11), 8856–8870 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (3)

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO(2) laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

R. Cohen, Y. Zeiri, E. Wurzberg, and R. Kosloff, “Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study,” J. Phys. Chem. A 111(43), 11074–11083 (2007).
[CrossRef] [PubMed]

S. Singh, “Sensors--An effective approach for the detection of explosives,” J. Hazard. Mater. 144(1-2), 15–28 (2007).
[CrossRef] [PubMed]

2006 (2)

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78(1), 24–32 (2006).
[CrossRef] [PubMed]

W. Schade, C. Bohling, K. Hohmann, and D. Scheel, “Laser-induced plasma spectroscopy for mine detection and verification,” Laser and Particle Beams 24(02), 241–247 (2006).
[CrossRef]

2005 (4)

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally-and time-resolved imaging,” Appl. Phys. B 80(4-5), 559–568 (2005).
[CrossRef]

G. Galbács, V. Budavári, and Z. Geretovszky, “Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer,” J. Anal. At. Spectrom. 20(9), 974–980 (2005).
[CrossRef]

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[CrossRef]

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 1217–1224 (2005).
[CrossRef]

2004 (2)

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 59(7), 975–986 (2004).
[CrossRef]

J. Scaffidi, W. Pearman, M. Lawrence, J. C. Carter, B. W. Colston, and S. M. Angel, “Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43(27), 5243–5250 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (3)

A. A. Voevodin, J. G. Jones, J. S. Zabinski, and L. Hultman, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92(2), 724 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys., A Mater. Sci. Process. 69, 913–916 (1999).

1998 (2)

B. C. Castle, K. Talabardon, B. W. Smith, and J. D. Winefordner, “Variables influencing the precision of laser-induced breakdown spectroscopy measurements,” Appl. Spectrosc. 52(5), 649–657 (1998).
[CrossRef]

C. Vivien, J. Hermann, A. Pertone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D Appl. Phys. 31(10), 1263–1272 (1998).
[CrossRef]

1997 (1)

S. S. Harilal, R. C. Issac, C. V. Bindhu, P. Gopinath, V. P. N. Nampoori, and C. P. G. Vallabhan, “Time resolved study of CN band emission from plasma generated by laser irradiation of graphite,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(10), 1527–1536 (1997).
[CrossRef]

1994 (1)

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987-1994,” Microchem. J. 50(3), 218–234 (1994).
[CrossRef]

1982 (1)

P. Mora, “Theoretical model of absorption of laser light by a plasma,” Phys. Fluids 25(6), 1051 (1982).
[CrossRef]

1969 (1)

E. H. Piepmeier and H. V. Malmstadt, “Q-switched laser energy absorption in the plume of an aluminum alloy,” Anal. Chem. 41(6), 700–707 (1969).
[CrossRef]

1965 (1)

J. E. Mentall and R. W. Nicholls, “Absolute band strengths for the C2 Swan system,” Proc. Phys. Soc. 86(4), 873–876 (1965).
[CrossRef]

Allen, S. D.

Angel, S. M.

Bar, I.

Bechard, S.

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys., A Mater. Sci. Process. 69, 913–916 (1999).

Bindhu, C. V.

S. S. Harilal, R. C. Issac, C. V. Bindhu, P. Gopinath, V. P. N. Nampoori, and C. P. G. Vallabhan, “Time resolved study of CN band emission from plasma generated by laser irradiation of graphite,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(10), 1527–1536 (1997).
[CrossRef]

Bohling, C.

W. Schade, C. Bohling, K. Hohmann, and D. Scheel, “Laser-induced plasma spectroscopy for mine detection and verification,” Laser and Particle Beams 24(02), 241–247 (2006).
[CrossRef]

Boulmer-Leborgne, C.

C. Vivien, J. Hermann, A. Pertone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D Appl. Phys. 31(10), 1263–1272 (1998).
[CrossRef]

Budavári, V.

G. Galbács, V. Budavári, and Z. Geretovszky, “Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer,” J. Anal. At. Spectrom. 20(9), 974–980 (2005).
[CrossRef]

Carter, J. C.

Castle, B. C.

Cohen, R.

R. Cohen, Y. Zeiri, E. Wurzberg, and R. Kosloff, “Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study,” J. Phys. Chem. A 111(43), 11074–11083 (2007).
[CrossRef] [PubMed]

Colao, F.

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

Colston, B. W.

Cremers, D. A.

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78(1), 24–32 (2006).
[CrossRef] [PubMed]

Cristoforetti, G.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally-and time-resolved imaging,” Appl. Phys. B 80(4-5), 559–568 (2005).
[CrossRef]

Dagdigian, P. J.

A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97(1), 243–248 (2009).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).
[CrossRef] [PubMed]

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 1217–1224 (2005).
[CrossRef]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[CrossRef] [PubMed]

DeLucia, F. C.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[CrossRef]

Detalle, V.

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
[CrossRef]

Dikmelik, Y.

Dottery, E. L.

Dubessy, J.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 59(7), 975–986 (2004).
[CrossRef]

Eland, K. L.

Fantoni, R.

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

Fichet, P.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 59(7), 975–986 (2004).
[CrossRef]

Galbács, G.

G. Galbács, V. Budavári, and Z. Geretovszky, “Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer,” J. Anal. At. Spectrom. 20(9), 974–980 (2005).
[CrossRef]

Gautier, C.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 59(7), 975–986 (2004).
[CrossRef]

Geretovszky, Z.

G. Galbács, V. Budavári, and Z. Geretovszky, “Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer,” J. Anal. At. Spectrom. 20(9), 974–980 (2005).
[CrossRef]

Gopinath, P.

S. S. Harilal, R. C. Issac, C. V. Bindhu, P. Gopinath, V. P. N. Nampoori, and C. P. G. Vallabhan, “Time resolved study of CN band emission from plasma generated by laser irradiation of graphite,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(10), 1527–1536 (1997).
[CrossRef]

Gottfried, J. L.

Harilal, S. S.

S. S. Harilal, R. C. Issac, C. V. Bindhu, P. Gopinath, V. P. N. Nampoori, and C. P. G. Vallabhan, “Time resolved study of CN band emission from plasma generated by laser irradiation of graphite,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(10), 1527–1536 (1997).
[CrossRef]

Harmon, R. S.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[CrossRef]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[CrossRef] [PubMed]

Hermann, J.

C. Vivien, J. Hermann, A. Pertone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D Appl. Phys. 31(10), 1263–1272 (1998).
[CrossRef]

Hohmann, K.

W. Schade, C. Bohling, K. Hohmann, and D. Scheel, “Laser-induced plasma spectroscopy for mine detection and verification,” Laser and Particle Beams 24(02), 241–247 (2006).
[CrossRef]

Hultman, L.

A. A. Voevodin, J. G. Jones, J. S. Zabinski, and L. Hultman, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92(2), 724 (2002).
[CrossRef]

Issac, R. C.

S. S. Harilal, R. C. Issac, C. V. Bindhu, P. Gopinath, V. P. N. Nampoori, and C. P. G. Vallabhan, “Time resolved study of CN band emission from plasma generated by laser irradiation of graphite,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(10), 1527–1536 (1997).
[CrossRef]

Jones, J. G.

A. A. Voevodin, J. G. Jones, J. S. Zabinski, and L. Hultman, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92(2), 724 (2002).
[CrossRef]

Khachatrian, A.

A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97(1), 243–248 (2009).
[CrossRef]

Killinger, D. K.

Kosloff, R.

R. Cohen, Y. Zeiri, E. Wurzberg, and R. Kosloff, “Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study,” J. Phys. Chem. A 111(43), 11074–11083 (2007).
[CrossRef] [PubMed]

Kuwako, A.

Lacour, J. L.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 59(7), 975–986 (2004).
[CrossRef]

LaPointe, A.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[CrossRef]

Lawrence, M.

Lazic, V.

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

Legnaioli, S.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally-and time-resolved imaging,” Appl. Phys. B 80(4-5), 559–568 (2005).
[CrossRef]

L'Hermite, D.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 59(7), 975–986 (2004).
[CrossRef]

Luches, A.

C. Vivien, J. Hermann, A. Pertone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D Appl. Phys. 31(10), 1263–1272 (1998).
[CrossRef]

Maeda, K.

Malmstadt, H. V.

E. H. Piepmeier and H. V. Malmstadt, “Q-switched laser energy absorption in the plume of an aluminum alloy,” Anal. Chem. 41(6), 700–707 (1969).
[CrossRef]

McEnnis, C.

McNesby, K. L.

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 1217–1224 (2005).
[CrossRef]

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[CrossRef]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[CrossRef] [PubMed]

Mentall, J. E.

J. E. Mentall and R. W. Nicholls, “Absolute band strengths for the C2 Swan system,” Proc. Phys. Soc. 86(4), 873–876 (1965).
[CrossRef]

Menut, D.

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 59(7), 975–986 (2004).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).
[CrossRef] [PubMed]

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[CrossRef]

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 1217–1224 (2005).
[CrossRef]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[CrossRef] [PubMed]

Mora, P.

P. Mora, “Theoretical model of absorption of laser light by a plasma,” Phys. Fluids 25(6), 1051 (1982).
[CrossRef]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).
[CrossRef] [PubMed]

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 1217–1224 (2005).
[CrossRef]

Nampoori, V. P. N.

S. S. Harilal, R. C. Issac, C. V. Bindhu, P. Gopinath, V. P. N. Nampoori, and C. P. G. Vallabhan, “Time resolved study of CN band emission from plasma generated by laser irradiation of graphite,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(10), 1527–1536 (1997).
[CrossRef]

Nicholls, R. W.

J. E. Mentall and R. W. Nicholls, “Absolute band strengths for the C2 Swan system,” Proc. Phys. Soc. 86(4), 873–876 (1965).
[CrossRef]

Pal, A.

Palleschi, V.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally-and time-resolved imaging,” Appl. Phys. B 80(4-5), 559–568 (2005).
[CrossRef]

Pearman, W.

Pershin, S.

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

Pertone, A.

C. Vivien, J. Hermann, A. Pertone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D Appl. Phys. 31(10), 1263–1272 (1998).
[CrossRef]

Piehler, T.

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 1217–1224 (2005).
[CrossRef]

Piepmeier, E. H.

E. H. Piepmeier and H. V. Malmstadt, “Q-switched laser energy absorption in the plume of an aluminum alloy,” Anal. Chem. 41(6), 700–707 (1969).
[CrossRef]

Portnov, A.

Radziemski, L. J.

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987-1994,” Microchem. J. 50(3), 218–234 (1994).
[CrossRef]

Rosenwaks, S.

Sabsabi, M.

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
[CrossRef]

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys., A Mater. Sci. Process. 69, 913–916 (1999).

Salvetti, A.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally-and time-resolved imaging,” Appl. Phys. B 80(4-5), 559–568 (2005).
[CrossRef]

Samuels, A. C.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[CrossRef]

Scaffidi, J.

Schade, W.

W. Schade, C. Bohling, K. Hohmann, and D. Scheel, “Laser-induced plasma spectroscopy for mine detection and verification,” Laser and Particle Beams 24(02), 241–247 (2006).
[CrossRef]

Scheel, D.

W. Schade, C. Bohling, K. Hohmann, and D. Scheel, “Laser-induced plasma spectroscopy for mine detection and verification,” Laser and Particle Beams 24(02), 241–247 (2006).
[CrossRef]

Sing, R.

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys., A Mater. Sci. Process. 69, 913–916 (1999).

Singh, S.

S. Singh, “Sensors--An effective approach for the detection of explosives,” J. Hazard. Mater. 144(1-2), 15–28 (2007).
[CrossRef] [PubMed]

Smith, B. W.

Spicer, J. B.

Stefano, C.

St-Onge, L.

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
[CrossRef]

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys., A Mater. Sci. Process. 69, 913–916 (1999).

Stratis, D. N.

Talabardon, K.

Tognoni, E.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally-and time-resolved imaging,” Appl. Phys. B 80(4-5), 559–568 (2005).
[CrossRef]

Uchida, Y.

Vallabhan, C. P. G.

S. S. Harilal, R. C. Issac, C. V. Bindhu, P. Gopinath, V. P. N. Nampoori, and C. P. G. Vallabhan, “Time resolved study of CN band emission from plasma generated by laser irradiation of graphite,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(10), 1527–1536 (1997).
[CrossRef]

Vivien, C.

C. Vivien, J. Hermann, A. Pertone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D Appl. Phys. 31(10), 1263–1272 (1998).
[CrossRef]

Voevodin, A. A.

A. A. Voevodin, J. G. Jones, J. S. Zabinski, and L. Hultman, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92(2), 724 (2002).
[CrossRef]

Walters, R. A.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[CrossRef]

Waterbury, R. D.

Winefordner, J. D.

Winkel, R. J.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[CrossRef]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[CrossRef] [PubMed]

Wurzberg, E.

R. Cohen, Y. Zeiri, E. Wurzberg, and R. Kosloff, “Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study,” J. Phys. Chem. A 111(43), 11074–11083 (2007).
[CrossRef] [PubMed]

Zabinski, J. S.

A. A. Voevodin, J. G. Jones, J. S. Zabinski, and L. Hultman, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92(2), 724 (2002).
[CrossRef]

Zeiri, Y.

R. Cohen, Y. Zeiri, E. Wurzberg, and R. Kosloff, “Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study,” J. Phys. Chem. A 111(43), 11074–11083 (2007).
[CrossRef] [PubMed]

Anal. Chem. (2)

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78(1), 24–32 (2006).
[CrossRef] [PubMed]

E. H. Piepmeier and H. V. Malmstadt, “Q-switched laser energy absorption in the plume of an aluminum alloy,” Anal. Chem. 41(6), 700–707 (1969).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (2)

A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97(1), 243–248 (2009).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally-and time-resolved imaging,” Appl. Phys. B 80(4-5), 559–568 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys., A Mater. Sci. Process. 69, 913–916 (1999).

Appl. Spectrosc. (4)

IEEE Sens. J. (1)

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[CrossRef]

J. Anal. At. Spectrom. (1)

G. Galbács, V. Budavári, and Z. Geretovszky, “Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer,” J. Anal. At. Spectrom. 20(9), 974–980 (2005).
[CrossRef]

J. Appl. Phys. (1)

A. A. Voevodin, J. G. Jones, J. S. Zabinski, and L. Hultman, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92(2), 724 (2002).
[CrossRef]

J. Hazard. Mater. (1)

S. Singh, “Sensors--An effective approach for the detection of explosives,” J. Hazard. Mater. 144(1-2), 15–28 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. A (1)

R. Cohen, Y. Zeiri, E. Wurzberg, and R. Kosloff, “Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study,” J. Phys. Chem. A 111(43), 11074–11083 (2007).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

C. Vivien, J. Hermann, A. Pertone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D Appl. Phys. 31(10), 1263–1272 (1998).
[CrossRef]

Laser and Particle Beams (1)

W. Schade, C. Bohling, K. Hohmann, and D. Scheel, “Laser-induced plasma spectroscopy for mine detection and verification,” Laser and Particle Beams 24(02), 241–247 (2006).
[CrossRef]

Microchem. J. (1)

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987-1994,” Microchem. J. 50(3), 218–234 (1994).
[CrossRef]

Opt. Express (3)

Phys. Fluids (1)

P. Mora, “Theoretical model of absorption of laser light by a plasma,” Phys. Fluids 25(6), 1051 (1982).
[CrossRef]

Proc. Phys. Soc. (1)

J. E. Mentall and R. W. Nicholls, “Absolute band strengths for the C2 Swan system,” Proc. Phys. Soc. 86(4), 873–876 (1965).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

S. S. Harilal, R. C. Issac, C. V. Bindhu, P. Gopinath, V. P. N. Nampoori, and C. P. G. Vallabhan, “Time resolved study of CN band emission from plasma generated by laser irradiation of graphite,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(10), 1527–1536 (1997).
[CrossRef]

Spectrochim. Acta, B At. Spectrosc. (4)

C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 59(7), 975–986 (2004).
[CrossRef]

C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 1217–1224 (2005).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
[CrossRef]

Other (8)

C. McEnnis, and J. B. Spicer, “Substrate-related effects on molecular and atomic emission in LIBS of explosives,” (2008), p. 695309.

L. J. Radziemski, and D. A. Cremers, Laser-induced plasmas and applications (CRC Press, 1989).

D. A. Cremers, and L. J. Radziemski, Handbook of laser-induced breakdown spectroscopy (John Wiley, 2006).

Y. B. Zel'Dovich, Physics of shock waves and high-temperature hydrodynamic phenomena (Dover Publications, 2002).

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochimica Acta Part B: Atomic Spectroscopy (2007).

M. Weidman, “Thermodynamic and spectroscopic properties of Nd:YAG-CO2 Double-Pulse Laser-Induced Iron Plasma,” Spectrochimica Acta Part B: Atomic Spectroscopy (2009).

L. L. Danylewych, and R. W. Nicholls, “Intensity Measurements and Transition Probabilities for Bands of the CN Violet (B2Σ+ - X2Σ+) Band System,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 557–573 (1978).

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “LIBS plasma enhancement for standoff detection applications,” Proceedings of SPIE, the International Society for Optical Engineering (2008), pp. 695403–695403.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The double-pulse experimental setup

Fig. 2
Fig. 2

The CO2 pulse was delayed with respect to the Nd:YAG pulse by Tp and the detector gate was delayed with respect to the CO2 pulse by Td. The duration of the detector gate (Tw) was 100 µs for all cases studied

Fig. 3
Fig. 3

Double-pulse LIBS spectrum for polystyrene on silicon. The second order of the CN violet band system appears at 776.6 nm. There are silicon lines present as a result of the substrate. The CO2 pulse followed the Nd:YAG pulse by 500 ns, gate delay of 50 ns and 100 µs acquisition.

Fig. 4
Fig. 4

LIBS emission from polystyrene as a function of the delay between laser pulses—Nd:YAG preceeding CO2. Triggering the CO2 laser before the Nd:YAG resulted in less signal from these three emitters.

Fig. 5
Fig. 5

Polystyrene on silicon: a) Nd:YAG single pulse, b) Nd:YAG/CO2 double-pulse

Fig. 6
Fig. 6

TNT on silicon: a) Nd:YAG single pulse, b) Nd:YAG/CO2 double-pulse

Metrics