Abstract

The transformation optics technique for designing novel electromagnetic and optical devices offers great control over wave behavior, but is difficult to implement primarily due to limitations in current metamaterial design and fabrication techniques. This paper demonstrates that restricting the spatial transformation to a conformal mapping can lead to much simpler material parameters for more practical implementation. As an example, a flat cylindrical-to-plane-wave conversion lens is presented and its performance validated through numerical simulations. It is shown that the lens dimensions and embedded source location can be adjusted to produce one, two, or four highly directive planar beams. Two metamaterial designs for this lens that implement the required effective medium parameters are proposed and their behavior analyzed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
    [CrossRef] [PubMed]
  4. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006).
    [CrossRef]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  6. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [CrossRef]
  7. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
    [CrossRef] [PubMed]
  8. D. P. Gaillot, C. Croënne, F. Zhang, and D. Lippens, “Transformation optics for the full dielectric electromagnetic cloak and metal–dielectric planar hyperlens,” N. J. Phys. 10(11), 115039 (2008).
    [CrossRef]
  9. M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
    [CrossRef]
  10. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32(23), 3432–3434 (2007).
    [CrossRef] [PubMed]
  11. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics and Nanostructures-Fundamentals and Applications 6(1), 87–95 (2008).
    [CrossRef]
  12. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express 11(7), 755–760 (2003).
    [CrossRef] [PubMed]
  13. W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett. 92(26), 261903 (2008).
    [CrossRef]
  14. D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17(10), 7807–7817 (2009).
    [CrossRef] [PubMed]
  15. D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” N. J. Phys. 10(11), 115023 (2008).
    [CrossRef]
  16. D.-H. Kwon and D. H. Werner, “Beam scanning using flat transformation electromagnetic focusing lenses,” IEEE Antennas Wirel. Propag. Lett. 8, 1115–1118 (2009).
    [CrossRef]
  17. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
    [CrossRef] [PubMed]
  18. D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17(19), 16535–16542 (2009).
    [CrossRef] [PubMed]
  19. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [CrossRef] [PubMed]
  20. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
    [CrossRef] [PubMed]
  21. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [CrossRef] [PubMed]
  22. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
    [CrossRef]
  23. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [CrossRef]

2009

2008

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics and Nanostructures-Fundamentals and Applications 6(1), 87–95 (2008).
[CrossRef]

D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” N. J. Phys. 10(11), 115023 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett. 92(26), 261903 (2008).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

D. P. Gaillot, C. Croënne, F. Zhang, and D. Lippens, “Transformation optics for the full dielectric electromagnetic cloak and metal–dielectric planar hyperlens,” N. J. Phys. 10(11), 115039 (2008).
[CrossRef]

2007

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32(23), 3432–3434 (2007).
[CrossRef] [PubMed]

2006

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

2003

2002

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[CrossRef] [PubMed]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[CrossRef]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Cheng, Q.

W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett. 92(26), 261903 (2008).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Croënne, C.

D. P. Gaillot, C. Croënne, F. Zhang, and D. Lippens, “Transformation optics for the full dielectric electromagnetic cloak and metal–dielectric planar hyperlens,” N. J. Phys. 10(11), 115039 (2008).
[CrossRef]

Cui, T. J.

W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett. 92(26), 261903 (2008).
[CrossRef]

Cummer, S. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics and Nanostructures-Fundamentals and Applications 6(1), 87–95 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[CrossRef] [PubMed]

Gaillot, D. P.

D. P. Gaillot, C. Croënne, F. Zhang, and D. Lippens, “Transformation optics for the full dielectric electromagnetic cloak and metal–dielectric planar hyperlens,” N. J. Phys. 10(11), 115039 (2008).
[CrossRef]

Guerin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[CrossRef] [PubMed]

Jiang, W. X.

W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett. 92(26), 261903 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kildishev, A. V.

A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32(23), 3432–3434 (2007).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Kundtz, N.

Kwon, D. H.

D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17(10), 7807–7817 (2009).
[CrossRef] [PubMed]

D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” N. J. Phys. 10(11), 115023 (2008).
[CrossRef]

Kwon, D.-H.

D.-H. Kwon and D. H. Werner, “Beam scanning using flat transformation electromagnetic focusing lenses,” IEEE Antennas Wirel. Propag. Lett. 8, 1115–1118 (2009).
[CrossRef]

Landy, N. I.

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

Li, J.

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

Lippens, D.

D. P. Gaillot, C. Croënne, F. Zhang, and D. Lippens, “Transformation optics for the full dielectric electromagnetic cloak and metal–dielectric planar hyperlens,” N. J. Phys. 10(11), 115039 (2008).
[CrossRef]

Ma, H. F.

W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett. 92(26), 261903 (2008).
[CrossRef]

Marqués, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[CrossRef]

Medina, F.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

Narimanov, E. E.

Neff, C. W.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

Padilla, W. J.

Pendry, J.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Pendry, J. B.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics and Nanostructures-Fundamentals and Applications 6(1), 87–95 (2008).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express 11(7), 755–760 (2003).
[CrossRef] [PubMed]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

Popa, B. I.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Qiu, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
[CrossRef]

Rafii-El-Idrissi, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[CrossRef]

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics and Nanostructures-Fundamentals and Applications 6(1), 87–95 (2008).
[CrossRef]

Roberts, D. A.

D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17(19), 16535–16542 (2009).
[CrossRef] [PubMed]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics and Nanostructures-Fundamentals and Applications 6(1), 87–95 (2008).
[CrossRef]

Ruan, Z.

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
[CrossRef]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[CrossRef] [PubMed]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics and Nanostructures-Fundamentals and Applications 6(1), 87–95 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Smith, D. R.

D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17(19), 16535–16542 (2009).
[CrossRef] [PubMed]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics and Nanostructures-Fundamentals and Applications 6(1), 87–95 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[CrossRef] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[CrossRef] [PubMed]

Werner, D. H.

D.-H. Kwon and D. H. Werner, “Beam scanning using flat transformation electromagnetic focusing lenses,” IEEE Antennas Wirel. Propag. Lett. 8, 1115–1118 (2009).
[CrossRef]

D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17(10), 7807–7817 (2009).
[CrossRef] [PubMed]

D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” N. J. Phys. 10(11), 115023 (2008).
[CrossRef]

Yan, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
[CrossRef]

Zhang, F.

D. P. Gaillot, C. Croënne, F. Zhang, and D. Lippens, “Transformation optics for the full dielectric electromagnetic cloak and metal–dielectric planar hyperlens,” N. J. Phys. 10(11), 115039 (2008).
[CrossRef]

Zhou, X. Y.

W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett. 92(26), 261903 (2008).
[CrossRef]

Appl. Phys. Lett.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett. 92(26), 261903 (2008).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett.

D.-H. Kwon and D. H. Werner, “Beam scanning using flat transformation electromagnetic focusing lenses,” IEEE Antennas Wirel. Propag. Lett. 8, 1115–1118 (2009).
[CrossRef]

N. J. Phys.

D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” N. J. Phys. 10(11), 115023 (2008).
[CrossRef]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

D. P. Gaillot, C. Croënne, F. Zhang, and D. Lippens, “Transformation optics for the full dielectric electromagnetic cloak and metal–dielectric planar hyperlens,” N. J. Phys. 10(11), 115039 (2008).
[CrossRef]

Nat. Photonics

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Photonics and Nanostructures-Fundamentals and Applications

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics and Nanostructures-Fundamentals and Applications 6(1), 87–95 (2008).
[CrossRef]

Phys. Rev. B

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99(23), 233901 (2007).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[CrossRef] [PubMed]

Science

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) The circular contours in the z-plane are mapped to straight lines in the ω-plane, with the effect of converting cylindrical waves from a source (antenna) at the origin into four highly collimated plane-wave beams.

Fig. 2
Fig. 2

(Color online) This device converts a cylindrical TE-mode wave from an embedded line source into directive beams using a dielectric lens with simple material parameters. (a) Line source centered in a square 0.4x0.4 m lens produces four beams. (b) Far field for four beams. (c) Line source centered in a 0.8x0.4 m rectangular lens produces two beams from the major axes of the lens. (d) Far field for four beams.

Fig. 3
Fig. 3

(Color online) (a) Single plane wave produced by placing the embedded line source 0.15 m from the top edge of the 0.5x0.5 m lens. (b) Line source placed 0.15 m from the top and right edges of a 0.5x0.5 m lens produces two perpendicular beams.

Fig. 5
Fig. 5

(Color online) Metamaterial performance for TE-mode without imaginary part of ϵzz (a) Quad-beam collimator (b) dual-beam collimator.

Fig. 6
Fig. 6

(Color online) Metamaterial performance for TE-mode considering imaginary part of ϵzz (a) Quad-beam collimator (b) Far field of quad-beam collimator. (c) Dual-beam collimator. (d) Far-field of dual-beam collimator.

Fig. 4
Fig. 4

(Color online) (a) Metamaterial unit cell, 2cm (x) by 2cm (y) by 3cm (z) (b) Geometry and dimensions of modified SRR: r2=7.05mm, r1=6mm, gaps=4mm, gapv=1mm (c) Geometry and dimensions of ELC resonator: l1=26.5mm, l2=8mm, w=0.5mm, gape=2mm, wstub=3.1mm (the SRR and ELC are assumed to be made of copper).

Fig. 7
Fig. 7

(Color Online) Simplified metamaterial structure using z-oriented linear dipole array. (a) Lens structure used for simulation, with a 15x15 grid of 50x20x20mm unit cells and 45x1mm dipoles. (b) Simulation results for TE-mode excitation at 4.1 GHz.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

u x = v y and v x = u y
ε ¯ ¯ = μ ¯ ¯ = A A T | A |
( u , v , z ) = ( u ( x , y ) , v ( x , y ) , z )
A = ( u x u y u z v x v y v z z x z y z z ) = ( u x v x 0 v x u x 0 0 0 1 )
ε ¯ ¯ = μ ¯ ¯ = A A T | A | = ( 1 0 0 0 1 0 0 0 1 / | A | )
ω = 1 z = 1 x + j y = x j y x 2 + y 2 = x x 2 + y 2 + j y x 2 + y 2 = u ( x , y ) + j v ( x , y )
ε ¯ ¯ = μ ¯ ¯ = ( 1 0 0 0 1 0 0 0 ( x 2 + y 2 ) 2 )
ε z z = μ z z = ( ( a x ) 2 + ( a y ) 2 )
ε ¯ ¯ = μ ¯ ¯ = ( 1 0 0 0 1 0 0 0 0 )

Metrics