Abstract

New nonlinear crystals Na3La9O3(BO3)8 (abbreviated as NLBO) with desired morphologies, high quality and weight exceeding 40g have been grown along different directions, such as [001], [110], and [100], by top-seeded solution growth(TSSG) method. The refractive indices were accurately measured over the full transmission range, and the second-order nonlinear optical coefficients were determined by the Maker fringe technique. The optimal phase-matching (PM) conditions and the corresponding effective nonlinear coefficient were calculated for second harmonic generation (SHG) at different wavelengths. In order to confirm the correctness of our calculation, we also performed the SHG experiments under 1064 and 800 nm pumping, respectively. In addition, we directly compared the SHG performance of NLBO with that of LBO under the same experimental conditions with the 1064 nm pumping source. As the results, a conversion efficiency of 58.3% at 532 nm was obtained for NLBO, and whereas only 21.5% was obtained for LBO, indicating that NLBO is a highly attractive nonlinear material for frequency conversion of pulses into the visible and ultraviolet.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cyranoski, “Materials science: China’s crystal cache,” Nature 457(7232), 953–955 (2009).
    [CrossRef] [PubMed]
  2. C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
    [CrossRef]
  3. Y. C. Wu, G. C. Zhang, P. Z. Fu, C. T. Chen, Chinese Patent, Application No., 01134393.1, November 2, 2001, Publication No. CN052I010563.
  4. P. Gravereau, J. P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, and P. Peshev, “Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O_La2O3_B2O3: preparation and crystal structure,” Solid State Sci. 4(7), 993–998 (2002).
    [CrossRef]
  5. G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth 275(1-2), e1997–e2001 (2005).
    [CrossRef]
  6. Y. Li, Y. Wu, G. Zhang, P. Fu, and X. Bai, “Flux growth and optical properties of Na3La9O3(BO3)8 crystals,” J. Cryst. Growth 292(2), 468–471 (2006).
    [CrossRef]
  7. C. Cascales, R. Balda, V. Jubera, J. P. Chaminade, and J. Fernández, “Optical spectroscopic study of Eu3+ crystal field sites in Na3La9O3(BO3)8 crystal,” Opt. Express 16(4), 2653–2662 (2008).
    [CrossRef] [PubMed]
  8. A. H. Reshak, S. Auluck, and I. V. Kityk, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp. 472(1-2), 30–34 (2009).
    [CrossRef]

2009

D. Cyranoski, “Materials science: China’s crystal cache,” Nature 457(7232), 953–955 (2009).
[CrossRef] [PubMed]

A. H. Reshak, S. Auluck, and I. V. Kityk, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp. 472(1-2), 30–34 (2009).
[CrossRef]

2008

2006

Y. Li, Y. Wu, G. Zhang, P. Fu, and X. Bai, “Flux growth and optical properties of Na3La9O3(BO3)8 crystals,” J. Cryst. Growth 292(2), 468–471 (2006).
[CrossRef]

2005

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth 275(1-2), e1997–e2001 (2005).
[CrossRef]

2002

P. Gravereau, J. P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, and P. Peshev, “Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O_La2O3_B2O3: preparation and crystal structure,” Solid State Sci. 4(7), 993–998 (2002).
[CrossRef]

1995

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[CrossRef]

Auluck, S.

A. H. Reshak, S. Auluck, and I. V. Kityk, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp. 472(1-2), 30–34 (2009).
[CrossRef]

Bai, X.

Y. Li, Y. Wu, G. Zhang, P. Fu, and X. Bai, “Flux growth and optical properties of Na3La9O3(BO3)8 crystals,” J. Cryst. Growth 292(2), 468–471 (2006).
[CrossRef]

Balda, R.

Cascales, C.

Chaminade, J. P.

C. Cascales, R. Balda, V. Jubera, J. P. Chaminade, and J. Fernández, “Optical spectroscopic study of Eu3+ crystal field sites in Na3La9O3(BO3)8 crystal,” Opt. Express 16(4), 2653–2662 (2008).
[CrossRef] [PubMed]

P. Gravereau, J. P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, and P. Peshev, “Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O_La2O3_B2O3: preparation and crystal structure,” Solid State Sci. 4(7), 993–998 (2002).
[CrossRef]

Chang, F.

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth 275(1-2), e1997–e2001 (2005).
[CrossRef]

Chen, C.

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth 275(1-2), e1997–e2001 (2005).
[CrossRef]

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[CrossRef]

Cyranoski, D.

D. Cyranoski, “Materials science: China’s crystal cache,” Nature 457(7232), 953–955 (2009).
[CrossRef] [PubMed]

Fernández, J.

Fu, P.

Y. Li, Y. Wu, G. Zhang, P. Fu, and X. Bai, “Flux growth and optical properties of Na3La9O3(BO3)8 crystals,” J. Cryst. Growth 292(2), 468–471 (2006).
[CrossRef]

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth 275(1-2), e1997–e2001 (2005).
[CrossRef]

Gravereau, P.

P. Gravereau, J. P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, and P. Peshev, “Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O_La2O3_B2O3: preparation and crystal structure,” Solid State Sci. 4(7), 993–998 (2002).
[CrossRef]

Ivanova, D.

P. Gravereau, J. P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, and P. Peshev, “Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O_La2O3_B2O3: preparation and crystal structure,” Solid State Sci. 4(7), 993–998 (2002).
[CrossRef]

Jubera, V.

Kityk, I. V.

A. H. Reshak, S. Auluck, and I. V. Kityk, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp. 472(1-2), 30–34 (2009).
[CrossRef]

Li, Y.

Y. Li, Y. Wu, G. Zhang, P. Fu, and X. Bai, “Flux growth and optical properties of Na3La9O3(BO3)8 crystals,” J. Cryst. Growth 292(2), 468–471 (2006).
[CrossRef]

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth 275(1-2), e1997–e2001 (2005).
[CrossRef]

Nikolov, V.

P. Gravereau, J. P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, and P. Peshev, “Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O_La2O3_B2O3: preparation and crystal structure,” Solid State Sci. 4(7), 993–998 (2002).
[CrossRef]

Pan, S.

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth 275(1-2), e1997–e2001 (2005).
[CrossRef]

Pechev, S.

P. Gravereau, J. P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, and P. Peshev, “Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O_La2O3_B2O3: preparation and crystal structure,” Solid State Sci. 4(7), 993–998 (2002).
[CrossRef]

Peshev, P.

P. Gravereau, J. P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, and P. Peshev, “Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O_La2O3_B2O3: preparation and crystal structure,” Solid State Sci. 4(7), 993–998 (2002).
[CrossRef]

Reshak, A. H.

A. H. Reshak, S. Auluck, and I. V. Kityk, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp. 472(1-2), 30–34 (2009).
[CrossRef]

Wang, Y.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[CrossRef]

Wu, B.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[CrossRef]

Wu, K.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[CrossRef]

Wu, Y.

Y. Li, Y. Wu, G. Zhang, P. Fu, and X. Bai, “Flux growth and optical properties of Na3La9O3(BO3)8 crystals,” J. Cryst. Growth 292(2), 468–471 (2006).
[CrossRef]

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth 275(1-2), e1997–e2001 (2005).
[CrossRef]

Yu, L.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[CrossRef]

Zeng, W.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[CrossRef]

Zhang, G.

Y. Li, Y. Wu, G. Zhang, P. Fu, and X. Bai, “Flux growth and optical properties of Na3La9O3(BO3)8 crystals,” J. Cryst. Growth 292(2), 468–471 (2006).
[CrossRef]

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth 275(1-2), e1997–e2001 (2005).
[CrossRef]

J. Alloy. Comp.

A. H. Reshak, S. Auluck, and I. V. Kityk, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp. 472(1-2), 30–34 (2009).
[CrossRef]

J. Cryst. Growth

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth 275(1-2), e1997–e2001 (2005).
[CrossRef]

Y. Li, Y. Wu, G. Zhang, P. Fu, and X. Bai, “Flux growth and optical properties of Na3La9O3(BO3)8 crystals,” J. Cryst. Growth 292(2), 468–471 (2006).
[CrossRef]

Nature

D. Cyranoski, “Materials science: China’s crystal cache,” Nature 457(7232), 953–955 (2009).
[CrossRef] [PubMed]

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[CrossRef]

Opt. Express

Solid State Sci.

P. Gravereau, J. P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, and P. Peshev, “Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O_La2O3_B2O3: preparation and crystal structure,” Solid State Sci. 4(7), 993–998 (2002).
[CrossRef]

Other

Y. C. Wu, G. C. Zhang, P. Z. Fu, C. T. Chen, Chinese Patent, Application No., 01134393.1, November 2, 2001, Publication No. CN052I010563.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) NLBO crystal grown along [210] directions; (b) The fitted dispersion curves of the NLBO prism over the full transmission range

Fig. 2
Fig. 2

(a) Orientation of the c-cut NLBO crystal to measure the Maker fringes of d 22; the (E)ω is the fundamental light and the (E) is the SH light. (b) (Color online) Experimental Maker fringe (type-I) of d 22(solid curve); theoretical fringe and theoretical envelope(dashed curves).

Fig. 3
Fig. 3

(a) Phase-matching curves for type I and type II; (b) Variation of walk-off angle for type I as a function of fundamental wavelength

Fig. 4
Fig. 4

(a) Phase-matching angles and the corresponding magnitude of the effective nonlinear coefficient for SHG type I (red) and type II(blue) as a function of fundamental wavelengths (b) Cross sections with certain wavelengths

Fig. 5
Fig. 5

(a) The orientations relationship of the optical indicatrix axes (Nx, Ny, Nz) and crystallographic axes ( a , b , c ); (b) Conversion efficiency and output power versus input fundamental power.

Fig. 6
Fig. 6

Comparison of the SHG (a) conversion efficiency versus incident peak intensity (b) output power versus input fundamental power in NLBO and LBO

Tables (1)

Tables Icon

Table 1 Comparison of the refractive indices between the experimental and calculated values for NLBO

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n e 2 = 3.1207853 + 0.02825765 λ 2 0.0147568 0.005254 × λ 2 . n o 2 = 3.4339330 + 0.0350044 λ 2 0.0180403 0.014413 × λ 2 .

Metrics