Abstract

We demonstrate a technique for generating azimuthally and radially polarized beams using a nematic liquid crystal spatial light modulator and a π phase step. The technique is similar in concept to prior techniques that interfere TEM01 and TEM10 laser modes, but the presented technique removes the requirement of interferometric stability. We calculate an overlap integral of >0.96 with >70% efficiency from an input Gaussian mode. The technique can easily switch between beams with azimuthal and radial polarization.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
    [CrossRef]
  2. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [CrossRef]
  3. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9(10), 490–497 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-10-490 .
    [CrossRef] [PubMed]
  4. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
  5. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-324 .
    [PubMed]
  6. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 .
    [CrossRef] [PubMed]
  7. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
    [CrossRef]
  8. K. T. Gahagan and G. A. Swartzlander., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16(4), 533–537 (1999).
    [CrossRef]
  9. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
    [CrossRef]
  10. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
    [CrossRef]
  11. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
    [CrossRef] [PubMed]
  12. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  13. J. Azoulay, A. Debarre, R. Jaffiol, and P. Tchenio, “Original tools for single-molecule spectroscopy,” Single Mol. 2(4), 241–249 (2001).
    [CrossRef]
  14. F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, and J. F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89(9), 093601 (2002).
    [CrossRef] [PubMed]
  15. C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
    [CrossRef]
  16. K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000).
    [CrossRef]
  17. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, “Optical properties of microfabricated fully-metal coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22(7), 1432–1441 (2005).
    [CrossRef]
  18. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  19. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
    [CrossRef] [PubMed]
  20. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [CrossRef] [PubMed]
  21. T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
    [CrossRef]
  22. U. D. Zeitner, B. Schnabel, E. B. Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-stripe grating pixels,” Appl. Opt. 38(11), 2177–2181 (1999).
    [CrossRef] [PubMed]
  23. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using spacevariant subwavelength metal strip grating,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
    [CrossRef]
  24. G. M. Lerman and U. Levy, “Space-variant subwavelength periodic element at a wavelength of 1064 nm,” Opt. Lett. 33, 22782–22784 (2008).
  25. M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27(21), 1929–1931 (2002).
    [CrossRef] [PubMed]
  26. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2650 .
    [CrossRef] [PubMed]
  27. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39(10), 1549–1554 (2000).
    [CrossRef] [PubMed]
  28. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234–2239 (1990).
    [CrossRef] [PubMed]
  29. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984–991 (2005).
    [CrossRef]
  30. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

G. M. Lerman and U. Levy, “Space-variant subwavelength periodic element at a wavelength of 1064 nm,” Opt. Lett. 33, 22782–22784 (2008).

2007 (1)

2006 (1)

2005 (2)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

2002 (5)

F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, and J. F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89(9), 093601 (2002).
[CrossRef] [PubMed]

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-324 .
[PubMed]

M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27(21), 1929–1931 (2002).
[CrossRef] [PubMed]

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

2001 (5)

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using spacevariant subwavelength metal strip grating,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
[CrossRef]

D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9(10), 490–497 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-10-490 .
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

J. Azoulay, A. Debarre, R. Jaffiol, and P. Tchenio, “Original tools for single-molecule spectroscopy,” Single Mol. 2(4), 241–249 (2001).
[CrossRef]

2000 (5)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 .
[CrossRef] [PubMed]

J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39(10), 1549–1554 (2000).
[CrossRef] [PubMed]

1999 (3)

1997 (1)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

1996 (1)

1990 (1)

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Aeschimann, L.

Aït-Ameur, K.

Alléaume, R.

F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, and J. F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89(9), 093601 (2002).
[CrossRef] [PubMed]

Azoulay, J.

J. Azoulay, A. Debarre, R. Jaffiol, and P. Tchenio, “Original tools for single-molecule spectroscopy,” Single Mol. 2(4), 241–249 (2001).
[CrossRef]

Beversluis, M. R.

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2650 .
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Biss, D. P.

Bomzon, Z.

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using spacevariant subwavelength metal strip grating,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
[CrossRef]

Brown, T. G.

Cottrell, D. M.

Courjon, D.

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Courty, J. M.

F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, and J. F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89(9), 093601 (2002).
[CrossRef] [PubMed]

Davis, J. A.

de Saint Denis, R.

Debarre, A.

J. Azoulay, A. Debarre, R. Jaffiol, and P. Tchenio, “Original tools for single-molecule spectroscopy,” Single Mol. 2(4), 241–249 (2001).
[CrossRef]

Descrovi, E.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Ford, D. H.

Gahagan, K. T.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Grosjean, T.

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Hasman, E.

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using spacevariant subwavelength metal strip grating,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
[CrossRef]

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[CrossRef] [PubMed]

Herzig, H. P.

Hierle, R.

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Jackel, S.

Jaffiol, R.

J. Azoulay, A. Debarre, R. Jaffiol, and P. Tchenio, “Original tools for single-molecule spectroscopy,” Single Mol. 2(4), 241–249 (2001).
[CrossRef]

Juškaitis, R.

Kimura, W. D.

Kleiner, V.

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using spacevariant subwavelength metal strip grating,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
[CrossRef]

Kley, E. B.

Kristensen, P.

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Le Floc’h, V.

F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, and J. F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89(9), 093601 (2002).
[CrossRef] [PubMed]

Leger, J. R.

Lerman, G. M.

G. M. Lerman and U. Levy, “Space-variant subwavelength periodic element at a wavelength of 1064 nm,” Opt. Lett. 33, 22782–22784 (2008).

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Levy, U.

G. M. Lerman and U. Levy, “Space-variant subwavelength periodic element at a wavelength of 1064 nm,” Opt. Lett. 33, 22782–22784 (2008).

Lumer, Y.

Machavariani, G.

Massoumian, F.

McNamara, D. E.

Meir, A.

Moshe, I.

Nakagawa, W.

Neil, M. A. A.

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Novotny, L.

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2650 .
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[CrossRef] [PubMed]

Passilly, N.

Piché, M.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Ramachandran, S.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Roch, J. F.

F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, and J. F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89(9), 093601 (2002).
[CrossRef] [PubMed]

Roch, J.-F.

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Schadt, M.

Schnabel, B.

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Sick, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[CrossRef] [PubMed]

Sonehara, T.

Spajer, M.

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Stalder, M.

Staufer, U.

Stranick, S. J.

Swartzlander, G. A.

Tchenio, P.

J. Azoulay, A. Debarre, R. Jaffiol, and P. Tchenio, “Original tools for single-molecule spectroscopy,” Single Mol. 2(4), 241–249 (2001).
[CrossRef]

Tidwell, S. C.

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Treussart, F.

N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984–991 (2005).
[CrossRef]

F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, and J. F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89(9), 093601 (2002).
[CrossRef] [PubMed]

Vaccaro, L.

Varin, C.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

Wilson, T.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[CrossRef]

Wyrowski, F.

Xiao, L. T.

F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, and J. F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89(9), 093601 (2002).
[CrossRef] [PubMed]

Yan, M. F.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 .
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000).
[CrossRef]

Zeitner, U. D.

Zhan, Q.

Appl. Opt. (3)

Appl. Phys. B (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using spacevariant subwavelength metal strip grating,” Appl. Phys. Lett. 79(11), 1587–1589 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. D (2)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

Opt. Commun. (1)

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. Lett. (5)

F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, and J. F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89(9), 093601 (2002).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Proc. SPIE (1)

K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000).
[CrossRef]

Single Mol. (1)

J. Azoulay, A. Debarre, R. Jaffiol, and P. Tchenio, “Original tools for single-molecule spectroscopy,” Single Mol. 2(4), 241–249 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup used to produce radially and azimuthally polarized beams.

Fig. 2
Fig. 2

Parameters required for producing radially polarized beams. Row letters (A - D) correspond to the positions in Fig. 1. Columns depict x-, y-, and combined polarizations at those points.

Fig. 3
Fig. 3

Parameters required for producing azimuthally polarized beams. Row letters (A - D) correspond to the positions in Fig. 1. Columns depict x-, y-, and combined polarizations at those points.

Fig. 4
Fig. 4

Experimental (top row) and calculated (bottom row) RPF images at the focus of lens L3. When the polarizer is present, its direction is shown by the arrows.

Fig. 5
Fig. 5

Schematic of the setup used to spatially filter the beam shown in the Fig. 4(a). The experimental and calculated final beams are shown. Also shown is the interferogram of the APF beam with the horizontally polarized TEM00 beam, and horizontally polarized APF beam before and after the pinhole.

Fig. 6
Fig. 6

Calculated overlap integral and the pinhole throughput as a function of the pinhole size for optimizing the TEM01 mode. The unmodified TEM00 waist diameter was 130 microns.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E R P F = C 0 exp ( r 2 ω 0 2 ) ( s i g n ( x ) x ^ + s i g n ( y ) y ^ ) ,
E R P F T R U E = C 1 exp ( r 2 ω 1 2 ) ( x x ^ + y y ^ ) = C 1 exp ( r 2 ω 1 2 ) ( r cos ( θ ) x ^ + r sin ( θ ) y ^ ) ,
E A P F = C 0 exp ( r 2 ω 0 2 ) ( s i g n ( y ) x ^ s i g n ( x ) y ^ ) ,
E R P F * E R P F T R U E d A = 0 C 0 C 1 exp ( r 2 ω 0 2 ) exp ( r 2 ω 1 2 ) r 2 d r π / 2 π / 2 2 cos ( θ ) d θ ,

Metrics