Abstract

The transmission of light through metallic films with periodic double nanoholes is studied using vectorial three-dimensional finite element method. Special emphasis is given on understanding different transmission resonances arising in gold and silver films with periodic sub-wavelength holes of different shapes. The spectral shift of the hole-shape resonance resulting from a variation of the hole refractive index is analyzed for a double nanohole geometry in the transmission mode using numerical simulations. Specifically, the role of field enhancement at the apexes of the double nanohole in the sensing of medium within the hole cavity is pointed out and discussed. The presence of sharp apexes within the double nanoholes significantly improves the resonance sensitivity as compared to rectangular holes of comparable area. Impact of possible manufacturing errors on the overall sensitivity is also characterized. Robustness and a relatively simple fabrication procedure make these kinds of refractive index sensors practically attractive.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [CrossRef] [PubMed]
  4. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [CrossRef] [PubMed]
  5. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
    [CrossRef] [PubMed]
  6. J. Lindberg, K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, “Spectral analysis of resonant transmission of light through a single sub-wavelength slit,” Opt. Express 12, 623630 (2004).
    [CrossRef]
  7. K. Lindfors, L. Lechner, and M. Kaivola, “Dependence of resonant light transmission properties of a subwavelength slit on structural parameters,” Opt. Express 17(13), 11026–11038 (2009).
    [CrossRef] [PubMed]
  8. S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A, Pure Appl. Opt. 9(4), 348–351 (2007).
    [CrossRef]
  9. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
    [CrossRef]
  10. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  11. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
    [CrossRef] [PubMed]
  12. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
    [CrossRef] [PubMed]
  13. L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, “Double nanohole apex enhanced transmission in metal films,” Appl. Phys. B 84(1-2), 25–28 (2006).
    [CrossRef]
  14. A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
    [CrossRef]
  15. A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
    [CrossRef]
  16. T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
    [CrossRef] [PubMed]
  17. P. Marthandam, A. G. Brolo, D. Sinton, K. L. Kavanagh, G. Matthew, and R. Gordon, “Nanoholes in metals with applications to sensors and spectroscopy,” Int. J. Nanotech. 5(9/10/11/12), 1058–1081 (2008).
    [CrossRef]
  18. A. Lesuffleur, H. Im, N. C. Lindquist, and O. Sang-Hyun, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
    [CrossRef]
  19. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]

2009

2008

P. Marthandam, A. G. Brolo, D. Sinton, K. L. Kavanagh, G. Matthew, and R. Gordon, “Nanoholes in metals with applications to sensors and spectroscopy,” Int. J. Nanotech. 5(9/10/11/12), 1058–1081 (2008).
[CrossRef]

2007

A. Lesuffleur, H. Im, N. C. Lindquist, and O. Sang-Hyun, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[CrossRef]

S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A, Pure Appl. Opt. 9(4), 348–351 (2007).
[CrossRef]

2006

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[CrossRef]

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, “Double nanohole apex enhanced transmission in metal films,” Appl. Phys. B 84(1-2), 25–28 (2006).
[CrossRef]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

2005

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

2004

J. Lindberg, K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, “Spectral analysis of resonant transmission of light through a single sub-wavelength slit,” Opt. Express 12, 623630 (2004).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

2001

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

1999

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Brolo, A. G.

P. Marthandam, A. G. Brolo, D. Sinton, K. L. Kavanagh, G. Matthew, and R. Gordon, “Nanoholes in metals with applications to sensors and spectroscopy,” Int. J. Nanotech. 5(9/10/11/12), 1058–1081 (2008).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Dahlin, A.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Dragnea, B.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

DuFort, C. C.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Enoch, S.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Fainman, Y.

Friberg, A. T.

J. Lindberg, K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, “Spectral analysis of resonant transmission of light through a single sub-wavelength slit,” Opt. Express 12, 623630 (2004).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Gordon, R.

P. Marthandam, A. G. Brolo, D. Sinton, K. L. Kavanagh, G. Matthew, and R. Gordon, “Nanoholes in metals with applications to sensors and spectroscopy,” Int. J. Nanotech. 5(9/10/11/12), 1058–1081 (2008).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[CrossRef]

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, “Double nanohole apex enhanced transmission in metal films,” Appl. Phys. B 84(1-2), 25–28 (2006).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Homola, J.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Höök, F.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Hughes, M. C.

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, “Double nanohole apex enhanced transmission in metal films,” Appl. Phys. B 84(1-2), 25–28 (2006).
[CrossRef]

Im, H.

A. Lesuffleur, H. Im, N. C. Lindquist, and O. Sang-Hyun, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kaivola, M.

K. Lindfors, L. Lechner, and M. Kaivola, “Dependence of resonant light transmission properties of a subwavelength slit on structural parameters,” Opt. Express 17(13), 11026–11038 (2009).
[CrossRef] [PubMed]

J. Lindberg, K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, “Spectral analysis of resonant transmission of light through a single sub-wavelength slit,” Opt. Express 12, 623630 (2004).
[CrossRef]

Käll, M.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Kavanagh, K. L.

P. Marthandam, A. G. Brolo, D. Sinton, K. L. Kavanagh, G. Matthew, and R. Gordon, “Nanoholes in metals with applications to sensors and spectroscopy,” Int. J. Nanotech. 5(9/10/11/12), 1058–1081 (2008).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[CrossRef]

Klein Koerkamp, K. J.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Koerkamp, K. J.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Kuipers, L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Kumar, L. K. S.

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[CrossRef]

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, “Double nanohole apex enhanced transmission in metal films,” Appl. Phys. B 84(1-2), 25–28 (2006).
[CrossRef]

Lechner, L.

Lesuffleur, A.

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[CrossRef]

A. Lesuffleur, H. Im, N. C. Lindquist, and O. Sang-Hyun, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[CrossRef]

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, “Double nanohole apex enhanced transmission in metal films,” Appl. Phys. B 84(1-2), 25–28 (2006).
[CrossRef]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Lindberg, J.

J. Lindberg, K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, “Spectral analysis of resonant transmission of light through a single sub-wavelength slit,” Opt. Express 12, 623630 (2004).
[CrossRef]

Lindfors, K.

K. Lindfors, L. Lechner, and M. Kaivola, “Dependence of resonant light transmission properties of a subwavelength slit on structural parameters,” Opt. Express 17(13), 11026–11038 (2009).
[CrossRef] [PubMed]

J. Lindberg, K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, “Spectral analysis of resonant transmission of light through a single sub-wavelength slit,” Opt. Express 12, 623630 (2004).
[CrossRef]

Lindquist, N. C.

A. Lesuffleur, H. Im, N. C. Lindquist, and O. Sang-Hyun, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Marthandam, P.

P. Marthandam, A. G. Brolo, D. Sinton, K. L. Kavanagh, G. Matthew, and R. Gordon, “Nanoholes in metals with applications to sensors and spectroscopy,” Int. J. Nanotech. 5(9/10/11/12), 1058–1081 (2008).
[CrossRef]

Martín-Moreno, L.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Matthew, G.

P. Marthandam, A. G. Brolo, D. Sinton, K. L. Kavanagh, G. Matthew, and R. Gordon, “Nanoholes in metals with applications to sensors and spectroscopy,” Int. J. Nanotech. 5(9/10/11/12), 1058–1081 (2008).
[CrossRef]

Moreno, E.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

Onuta, T. D.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

Pang, L.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

Qiu, M.

S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A, Pure Appl. Opt. 9(4), 348–351 (2007).
[CrossRef]

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Sang-Hyun, O.

A. Lesuffleur, H. Im, N. C. Lindquist, and O. Sang-Hyun, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Schaich, W. L.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

Segerink, F. B.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Setälä, T.

J. Lindberg, K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, “Spectral analysis of resonant transmission of light through a single sub-wavelength slit,” Opt. Express 12, 623630 (2004).
[CrossRef]

Sinton, D.

P. Marthandam, A. G. Brolo, D. Sinton, K. L. Kavanagh, G. Matthew, and R. Gordon, “Nanoholes in metals with applications to sensors and spectroscopy,” Int. J. Nanotech. 5(9/10/11/12), 1058–1081 (2008).
[CrossRef]

Sutherland, D. S.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Tetz, K. A.

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

van Hulst, N. F.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Waegele, M.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xiao, S.

S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A, Pure Appl. Opt. 9(4), 348–351 (2007).
[CrossRef]

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Appl. Phys. B

L. K. S. Kumar, A. Lesuffleur, M. C. Hughes, and R. Gordon, “Double nanohole apex enhanced transmission in metal films,” Appl. Phys. B 84(1-2), 25–28 (2006).
[CrossRef]

Appl. Phys. Lett.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[CrossRef]

A. Lesuffleur, H. Im, N. C. Lindquist, and O. Sang-Hyun, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Int. J. Nanotech.

P. Marthandam, A. G. Brolo, D. Sinton, K. L. Kavanagh, G. Matthew, and R. Gordon, “Nanoholes in metals with applications to sensors and spectroscopy,” Int. J. Nanotech. 5(9/10/11/12), 1058–1081 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A, Pure Appl. Opt. 9(4), 348–351 (2007).
[CrossRef]

J. Phys. Chem. C

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[CrossRef]

Nano Lett.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express

J. Lindberg, K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, “Spectral analysis of resonant transmission of light through a single sub-wavelength slit,” Opt. Express 12, 623630 (2004).
[CrossRef]

K. Lindfors, L. Lechner, and M. Kaivola, “Dependence of resonant light transmission properties of a subwavelength slit on structural parameters,” Opt. Express 17(13), 11026–11038 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Phys. Rev. Lett.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Two types of metallic films with an infinite periodic array of: (a) double nanoholes, (b) rectangular holes of 425 nm periodicity, and (c) and (d) their respective unit cells. In (c), the diameter of the circular holes is 112.5 nm and they are overlapped by a distance of x nm to give the double nanohole with an effective width of (225 - x) nm. Incident light is polarized along the two apexes (shorter dimension) of the double nanohole (rectangular hole) as shown in (c) and (d).

Fig. 2
Fig. 2

Transmission through rectangular holes (225 x 150 nm2) of periodicity 425 nm

Fig. 3
Fig. 3

Transmission for (a) a single DNH and (b) periodic DNHs with an overlap distance of 5 nm in a gold film. The legends in (b) are the different periodicity values. Markers ‘X’ and ‘Y’ show the shape resonances or RLW modes.

Fig. 4
Fig. 4

Transmittance vs wavelength of an ideal periodic DNH structure with an overlap distance of 5 nm (blue), 10 nm (red), and 15 nm (black) in (a) Au film and (b) Ag film. Solid lines (-), dashed lines (--), and dotted lines (···) correspond to refractive index of 1, 1.05, and 1.1 of the DNH cavity, respectively. In (a), markers ‘X’ and ‘Y’ denote the shape resonance peaks of the DNH.

Fig. 5
Fig. 5

Shift of RLW mode when the medium of incidence is varied together with the medium in the DNH cavity for Au and Ag films of thickness t.

Fig. 6
Fig. 6

Comparison between the transmission spectra of ideal and blunted DNH structures in an Au film. Solid lines (-) and dashed lines (--) correspond to the refractive index of 1 and 1.1 of the DNH cavity, respectively. Parameter h denotes the blunting factor.

Fig. 7
Fig. 7

Magnitude of the E-field distribution for ideal and blunted DNH structures (half section of a symmetric DNH with 5 nm overlap factor) in a gold film at different hole-shape resonance (RLW) conditions.

Tables (1)

Tables Icon

Table 1 Wavelength sensitivity of the RLW mode for different overlap distances of circular holes in ideal double nanohole structures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ S P = L i 2 + j 2 ε m ε d ε m + ε d ,

Metrics