Abstract

In this paper we investigate the near-field optical behavior of plasmon coupling in gold nanoparticle pairs. In particular, by performing series measurements through a fiber-collection mode near-field scanning optical microscope (NSOM), we directly observed the localized electromagnetic (EM) field distribution between two nanospheres is sensitively depended on the incident polarization and interparticle distance. The qualitative near-field observation and quantitative analysis facilitate more understanding of localized hot spots in surface-enhanced Raman scattering (SERS), and nano-applications in selectively controlling the spatial distribution of localized surface plasmon (SP) modes on a fabricated nanostructure by adjusting the polarization direction.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36(9), 5027–5030 (1987).
    [CrossRef]
  2. Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
    [CrossRef]
  3. C. Bohren, and D. Huffiman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1982).
  4. C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
    [CrossRef] [PubMed]
  5. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  6. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [CrossRef]
  7. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26(14), 1096–1098 (2001).
    [CrossRef] [PubMed]
  8. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
    [CrossRef] [PubMed]
  9. Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
    [CrossRef] [PubMed]
  10. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
    [CrossRef]
  11. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
    [CrossRef] [PubMed]
  12. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [CrossRef]
  13. V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36(6-7), 648–656 (2005).
    [CrossRef]
  14. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
    [CrossRef]
  15. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]
  16. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [CrossRef]
  17. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
    [CrossRef] [PubMed]
  18. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
    [CrossRef] [PubMed]
  19. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
    [CrossRef] [PubMed]
  20. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
    [CrossRef]
  21. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
    [CrossRef]
  22. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
    [CrossRef]
  23. K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
    [CrossRef]
  24. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [CrossRef]
  25. H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
    [CrossRef] [PubMed]
  26. Z. Zhu, T. Zhu, and Z. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling,” Nanotechnology 15(3), 357–364 (2004).
    [CrossRef]
  27. N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76(18), 5370–5378 (2004).
    [CrossRef] [PubMed]
  28. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88(6), 067402 (2002).
    [CrossRef] [PubMed]
  29. J. F. Wolf, P. E. Hillner, R. Bilewicz, P. Kölsch, and J. P. Rabe, “Novel scanning near-field optical microscope (SNOM)/ scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips,” Rev. Sci. Instrum. 70(6), 2751–2757 (1999).
    [CrossRef]

2009

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

2008

C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[CrossRef] [PubMed]

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

2007

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[CrossRef]

2006

2005

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36(6-7), 648–656 (2005).
[CrossRef]

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[CrossRef] [PubMed]

2004

Z. Zhu, T. Zhu, and Z. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling,” Nanotechnology 15(3), 357–364 (2004).
[CrossRef]

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76(18), 5370–5378 (2004).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

2002

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88(6), 067402 (2002).
[CrossRef] [PubMed]

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[CrossRef] [PubMed]

2001

2000

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[CrossRef]

1999

J. F. Wolf, P. E. Hillner, R. Bilewicz, P. Kölsch, and J. P. Rabe, “Novel scanning near-field optical microscope (SNOM)/ scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips,” Rev. Sci. Instrum. 70(6), 2751–2757 (1999).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

1998

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
[CrossRef]

1993

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
[CrossRef]

1987

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36(9), 5027–5030 (1987).
[CrossRef]

1985

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Aizpurua, J.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[CrossRef] [PubMed]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

Ben-Amotz, D.

V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36(6-7), 648–656 (2005).
[CrossRef]

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88(6), 067402 (2002).
[CrossRef] [PubMed]

Bilewicz, R.

J. F. Wolf, P. E. Hillner, R. Bilewicz, P. Kölsch, and J. P. Rabe, “Novel scanning near-field optical microscope (SNOM)/ scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips,” Rev. Sci. Instrum. 70(6), 2751–2757 (1999).
[CrossRef]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Breuer, H. D.

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36(9), 5027–5030 (1987).
[CrossRef]

Brus, L.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[CrossRef]

Bryant, G. W.

Chilkoti, A.

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76(18), 5370–5378 (2004).
[CrossRef] [PubMed]

Chong, T. C.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Chu, S. W.

Chui, H. C.

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
[CrossRef]

Davisson, V. J.

V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36(6-7), 648–656 (2005).
[CrossRef]

Deinum, G.

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
[CrossRef]

Drachev, V. P.

V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36(6-7), 648–656 (2005).
[CrossRef]

Edwardson, S. P.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

El-Sayed, M. A.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88(6), 067402 (2002).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

García De Abajo, F. J.

Guo, W.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Hafner, J. H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

Halas, N. J.

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[CrossRef] [PubMed]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

Hillner, P. E.

J. F. Wolf, P. E. Hillner, R. Bilewicz, P. Kölsch, and J. P. Rabe, “Novel scanning near-field optical microscope (SNOM)/ scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips,” Rev. Sci. Instrum. 70(6), 2751–2757 (1999).
[CrossRef]

Hong, M. H.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Huang, C. H.

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[CrossRef]

Hulteen, J. C.

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
[CrossRef]

Jain, P. K.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[CrossRef]

Jiang, J.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[CrossRef]

Käll, M.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Kartha, V. B.

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
[CrossRef]

Khaliullin, E. N.

V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36(6-7), 648–656 (2005).
[CrossRef]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
[CrossRef]

Kölsch, P.

J. F. Wolf, P. E. Hillner, R. Bilewicz, P. Kölsch, and J. P. Rabe, “Novel scanning near-field optical microscope (SNOM)/ scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips,” Rev. Sci. Instrum. 70(6), 2751–2757 (1999).
[CrossRef]

Kottmann, J. P.

Kreibig, U.

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36(9), 5027–5030 (1987).
[CrossRef]

Lan, Y. C.

Levin, C. S.

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[CrossRef] [PubMed]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Li, L.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Liao, H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

Lin, C. H.

Lin, H. Y.

Lin, Y.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Liu, Z.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Z. Zhu, T. Zhu, and Z. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling,” Nanotechnology 15(3), 357–364 (2004).
[CrossRef]

Luk’yanchuk, B. S.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Mahmoud, M.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

Manoharan, R.

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
[CrossRef]

Martin, O. J. F.

Michaels, A. M.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Murali, R.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

Nashine, V.

V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36(6-7), 648–656 (2005).
[CrossRef]

Nath, N.

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76(18), 5370–5378 (2004).
[CrossRef] [PubMed]

Nehl, C. L.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Rabe, J. P.

J. F. Wolf, P. E. Hillner, R. Bilewicz, P. Kölsch, and J. P. Rabe, “Novel scanning near-field optical microscope (SNOM)/ scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips,” Rev. Sci. Instrum. 70(6), 2751–2757 (1999).
[CrossRef]

Romero, I.

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

Schmitz, B.

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36(9), 5027–5030 (1987).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Shalaev, V. M.

V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36(6-7), 648–656 (2005).
[CrossRef]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88(6), 067402 (2002).
[CrossRef] [PubMed]

Sun, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[CrossRef] [PubMed]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Tabor, C.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

Thoreson, M. D.

V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36(6-7), 648–656 (2005).
[CrossRef]

Treichel, D. A.

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
[CrossRef]

Van Duyne, R. P.

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
[CrossRef]

Wang, H.

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[CrossRef] [PubMed]

Wang, Z. B.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Watkins, K. G.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Whitehead, D. J.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Wolf, J. F.

J. F. Wolf, P. E. Hillner, R. Bilewicz, P. Kölsch, and J. P. Rabe, “Novel scanning near-field optical microscope (SNOM)/ scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips,” Rev. Sci. Instrum. 70(6), 2751–2757 (1999).
[CrossRef]

Xia, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[CrossRef] [PubMed]

Xu, H.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Zhu, T.

Z. Zhu, T. Zhu, and Z. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling,” Nanotechnology 15(3), 357–364 (2004).
[CrossRef]

Zhu, Z.

Z. Zhu, T. Zhu, and Z. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling,” Nanotechnology 15(3), 357–364 (2004).
[CrossRef]

Anal. Chem.

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76(18), 5370–5378 (2004).
[CrossRef] [PubMed]

Chem. Rev.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[CrossRef] [PubMed]

J. Chem. Phys.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
[CrossRef]

J. Phys. Chem. A

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

J. Phys. Chem. B

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

J. Raman Spectrosc.

V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36(6-7), 648–656 (2005).
[CrossRef]

Nano Lett.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[CrossRef]

Nanotechnology

Z. Zhu, T. Zhu, and Z. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling,” Nanotechnology 15(3), 357–364 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36(9), 5027–5030 (1987).
[CrossRef]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6281–6284 (1998).
[CrossRef]

Phys. Rev. Lett.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88(6), 067402 (2002).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Rev. Sci. Instrum.

J. F. Wolf, P. E. Hillner, R. Bilewicz, P. Kölsch, and J. P. Rabe, “Novel scanning near-field optical microscope (SNOM)/ scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips,” Rev. Sci. Instrum. 70(6), 2751–2757 (1999).
[CrossRef]

Science

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[CrossRef] [PubMed]

Other

C. Bohren, and D. Huffiman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The setup of fiber-collection mode NSOM. (b) The absorption spectrum of Au nanoparticles. The spectral position of the NSOM excitation is shown with G line. Inset: SEM image of Au nanoparticles.

Fig. 2
Fig. 2

Measured NSOM images of an adjacent nanoparticle pair (d=53 nm) at the excitation laser’s wavelength (532 nm) for (a) the incident polarization is perpendicular to the interparticle axis and (b) the incident polarization is parallel to the interparticle axis. Their cross-sectional views are combined in (c), showing the difference in between.

Fig. 3
Fig. 3

Measured NSOM images of an adjacent nanoparticle pair (d=20 nm) at the excitation laser’s wavelength (532 nm) for (a) the incident polarization is perpendicular to the interparticle axis and (b) the incident polarization is parallel to the interparticle axis. Their cross-sectional views are combined in (c), showing the dramatic difference in between.

Fig. 4
Fig. 4

Polarization-related optical responses of nanoparticle pairs. (a) Normalized near-field optical signal for d=0.8R and d=2R as a function of polarization angle (θ). Inset: topographies of Au nanoparticle pairs. Fitting curves are plotted in the polar diagram (b).

Fig. 5
Fig. 5

Normalized optical field intensity in the central gap region of Au nanoparticle pairs are fitted for the parallel-polarized (blue curve) and orthogonal-polarized (red-dotted curve) excitations.

Metrics