Abstract

We propose and demonstrate a cross-talk free simultaneous measurement system for temperature and external refractive index (ERI) implemented by dual-cavity Fabry-Perot (FP) fiber interferometer. The sensing probe consists of two cascaded FP cavities formed with a short piece of multimode fiber (MMF) and a micro-air-gap made of hollow core fiber (HOF). The fabricated sensor head was ultra-compact; the total length of the sensing part was less than 600 μm. Since the reflection spectrum of the composite FP structures is given by the superposition of each cavity spectrum, the spectrum measured in the wavelength domain was analyzed in the Fourier or spatial frequency domain. The experimental results showed that temperature could be determined independently from the spatial frequency shift without being affected by the ERI, while the ERI could be also measured solely by monitoring the intensity variation in the spatial frequency spectrum. The ERI and the temperature sensitivities were approximately 16 dB/RIU for the 1.33-1.45 index range, and 8.9 nm/°C at low temperature and 14.6 nm/°C at high temperature, respectively. In addition, it is also demonstrated that the proposed dual-cavity FP sensor has potential for compensating any power fluctuation that might happen in the input light source.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, “Optical Fiber Sensor Technologies: Opportunities and - Perhaps - Pitfalls,” J. Lightwave Technol. 22(1), 39–50 (2004).
    [CrossRef]
  2. Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
    [CrossRef]
  3. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [CrossRef]
  4. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
    [CrossRef]
  5. O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7(11), 2970–2983 (2007).
    [CrossRef]
  6. M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
    [CrossRef]
  7. T. Guo, X. Qiao, Z. Jia, Q. Zhao, and X. Dong, “Simultaneous measurement of temperature and pressure by a single fiber Bragg grating with a broadened reflection spectrum,” Appl. Opt. 45(13), 2935–2939 (2006).
    [CrossRef] [PubMed]
  8. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [CrossRef]
  9. T. Zhu, Y.-J. Rao, and Q.-J. Mo, “Simultaneous measurement of Refractive Index and Temperature using a single ultralong-Period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
    [CrossRef]
  10. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
    [CrossRef] [PubMed]
  11. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
    [CrossRef]
  12. H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33(8), 812–814 (2008).
    [CrossRef] [PubMed]
  13. Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
    [CrossRef]
  14. X. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27(16), 1388–1390 (2002).
    [CrossRef] [PubMed]
  15. T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [CrossRef] [PubMed]
  16. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement,” Appl. Opt. 44(26), 5368–5373 (2005).
    [CrossRef] [PubMed]
  17. L.- Yuana, L.- Zhoub, and J. Wu, “Fiber optic temperature sensor with duplex Michleson interferometric technique,” Sens. Actuators A Phys. 86(1-2), 2–7 (2000).
    [CrossRef]
  18. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In-line fiber étalon for strain measurement,” Opt. Lett. 18(22), 1973–1975 (1993).
    [CrossRef] [PubMed]
  19. X. Wan, H. F. Taylor, K. L. Cooper, and A. Wang, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27(16), 1388–1390 (2002).
    [CrossRef] [PubMed]
  20. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [CrossRef] [PubMed]
  21. Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  22. D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett. 30(22), 3000–3002 (2005).
    [CrossRef] [PubMed]
  23. Y. Zhang, X. C. Y. Wang, K. L. Cooper, and A. Wang, “Microgap Multicavity Fabry–Pérot Biosensor,” J. Lightwave Technol. 25, 1797–1804 (2007).
  24. Y.-J. Rao, M. Deng, T. Zhu, and H. Li, “In-Line Fabry–Perot Etalons Based on Hollow-Core Photonic Bandgap Fibers for High-Temperature Applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009).
    [CrossRef]
  25. W.-H. Tsai and C.-J. Lin, “A Novel Structure for the Intrinsic Fabry-Perot Fiber-Optic Temperature Sensor,” J. Lightwave Technol. 19(5), 682–686 (2001).
    [CrossRef]
  26. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [CrossRef] [PubMed]
  27. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]

2009

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Y.-J. Rao, M. Deng, T. Zhu, and H. Li, “In-Line Fabry–Perot Etalons Based on Hollow-Core Photonic Bandgap Fibers for High-Temperature Applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009).
[CrossRef]

2008

2007

2006

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

T. Guo, X. Qiao, Z. Jia, Q. Zhao, and X. Dong, “Simultaneous measurement of temperature and pressure by a single fiber Bragg grating with a broadened reflection spectrum,” Appl. Opt. 45(13), 2935–2939 (2006).
[CrossRef] [PubMed]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

2005

T. Zhu, Y.-J. Rao, and Q.-J. Mo, “Simultaneous measurement of Refractive Index and Temperature using a single ultralong-Period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement,” Appl. Opt. 44(26), 5368–5373 (2005).
[CrossRef] [PubMed]

D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett. 30(22), 3000–3002 (2005).
[CrossRef] [PubMed]

2004

2003

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

2002

2001

2000

L.- Yuana, L.- Zhoub, and J. Wu, “Fiber optic temperature sensor with duplex Michleson interferometric technique,” Sens. Actuators A Phys. 86(1-2), 2–7 (2000).
[CrossRef]

1999

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[CrossRef]

1993

Baptista, J. M.

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7(11), 2970–2983 (2007).
[CrossRef]

Barnes, J.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Bennion, I.

Berkoff, T. A.

Bock, W.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Brennan, D. D.

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Chen, X.

Chiang, K. S.

Choi, E. S.

Choi, H. Y.

Cooper, K. L.

Culshaw, B.

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Deng, M.

Dong, X.

Fraser, J. M.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Frazão, O.

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7(11), 2970–2983 (2007).
[CrossRef]

Friebele, E. J.

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Greig, P.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Guo, T.

Gwandu, B. A. L.

Han, Y.

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Jia, Z.

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

Kersey, A. D.

Kim, D. W.

Kim, M. J.

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
[CrossRef]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[CrossRef] [PubMed]

Kim, S.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

Kim, Y. H.

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
[CrossRef]

Lee, B. H.

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

Li, H.

Liao, X.

Lin, C.-J.

Liu, W. J.

Liu, Y.

Loock, H.-P.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Mo, Q.-J.

T. Zhu, Y.-J. Rao, and Q.-J. Mo, “Simultaneous measurement of Refractive Index and Temperature using a single ultralong-Period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[CrossRef]

Mudhana, G.

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
[CrossRef]

Oh, K.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

Oleschuk, R. D.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Paek, U.-C.

Park, K. S.

Park, S. J.

Putman, M. A.

Qiao, X.

Ran, Z. L.

Rao, Y. J.

Rao, Y.-J.

Y.-J. Rao, M. Deng, T. Zhu, and H. Li, “In-Line Fabry–Perot Etalons Based on Hollow-Core Photonic Bandgap Fibers for High-Temperature Applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009).
[CrossRef]

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

T. Zhu, Y.-J. Rao, and Q.-J. Mo, “Simultaneous measurement of Refractive Index and Temperature using a single ultralong-Period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[CrossRef]

Santos, J. L.

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7(11), 2970–2983 (2007).
[CrossRef]

Shen, F.

Shu, X.

Sirkis, J. S.

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Taylor, H. F.

Tian, Z.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Tsai, H.-L.

Tsai, W.-H.

Wan, X.

Wang, A.

Wang, X. C. Y.

Wei, T.

Wu, J.

L.- Yuana, L.- Zhoub, and J. Wu, “Fiber optic temperature sensor with duplex Michleson interferometric technique,” Sens. Actuators A Phys. 86(1-2), 2–7 (2000).
[CrossRef]

Xiao, H.

Yam, S. S.-H.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Yuana, L.-

L.- Yuana, L.- Zhoub, and J. Wu, “Fiber optic temperature sensor with duplex Michleson interferometric technique,” Sens. Actuators A Phys. 86(1-2), 2–7 (2000).
[CrossRef]

Zhang, L.

Zhang, Y.

Zhao, Q.

Zhoub, L.-

L.- Yuana, L.- Zhoub, and J. Wu, “Fiber optic temperature sensor with duplex Michleson interferometric technique,” Sens. Actuators A Phys. 86(1-2), 2–7 (2000).
[CrossRef]

Zhu, T.

Y.-J. Rao, M. Deng, T. Zhu, and H. Li, “In-Line Fabry–Perot Etalons Based on Hollow-Core Photonic Bandgap Fibers for High-Temperature Applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009).
[CrossRef]

T. Zhu, Y.-J. Rao, and Q.-J. Mo, “Simultaneous measurement of Refractive Index and Temperature using a single ultralong-Period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Zhu, Y.-J. Rao, and Q.-J. Mo, “Simultaneous measurement of Refractive Index and Temperature using a single ultralong-Period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. Lasers Eng.

Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[CrossRef]

Opt. Lett.

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[CrossRef] [PubMed]

X. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27(16), 1388–1390 (2002).
[CrossRef] [PubMed]

T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33(8), 812–814 (2008).
[CrossRef] [PubMed]

J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In-line fiber étalon for strain measurement,” Opt. Lett. 18(22), 1973–1975 (1993).
[CrossRef] [PubMed]

X. Wan, H. F. Taylor, K. L. Cooper, and A. Wang, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27(16), 1388–1390 (2002).
[CrossRef] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[CrossRef] [PubMed]

D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett. 30(22), 3000–3002 (2005).
[CrossRef] [PubMed]

Sens. Actuators A Phys.

L.- Yuana, L.- Zhoub, and J. Wu, “Fiber optic temperature sensor with duplex Michleson interferometric technique,” Sens. Actuators A Phys. 86(1-2), 2–7 (2000).
[CrossRef]

Sensors

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7(11), 2970–2983 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the cleaving system specially designed for the proposed sensor. It consists of three parts; two fixed fiber holders and a fiber cleaver that is mounted on a 3-axis translation stage. For the fiber splicing a movable holder, in addition to the fixed holder, is introduced at the left assembly. SMF: Single mode fiber. HOF: hollow optical fiber.

Fig. 2
Fig. 2

Microscope image of the fabricated FP sensor. The HOF cavity and the MMF cavity lengths were designed to be 70 μm and 500 μm, respectively. The inset is the cross-section image of HOF.

Fig. 3
Fig. 3

Microscopic images of HOF cavities and the measured reflection spectra; for the air-gap of (a) 50 μm, (c) 100 μm and (e) 150 μm.

Fig. 4
Fig. 4

(a) The reflection spectrum of the fabricated dual-cavity FP interferometer and (b) its spatial frequency spectrum obtained by taking fast Fourier transformation (FFT).

Fig. 5
Fig. 5

(a) Reflection spectra of the FP sensor measured with several ERIs. The inset is the close-up of the interference fringes in the dotted red box. (b) Spatial frequency spectra calculated from Fig. 5 (a). The inset is the enlarged one of the red box.

Fig. 6
Fig. 6

The magnitude of the peak 3 in Fig. 5 (b) measured and plotted in terms of ERI. It is well fitted with a quadratic curve (red line) rather than with a linear curve (blue line). The inset is the enlarged plot. ERI response can be approximated by linear one over index range 1.33-1.45 (green line)

Fig. 7
Fig. 7

(a) The reflection spectra measured at several temperatures but plotted together, and (b) the corresponding spatial frequency spectra. The insets are close-up displays.

Fig. 8
Fig. 8

The temperature responses of MMF cavity (a) and SMF cavity (b). The spatial frequency shifts of MMF and SMF cavity were approximately 0.0026/ nm and 0.0019/nm, respectively, for the temperature change from 26 °C to 500 °C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = | n 0 n 1 n 0 + n 1 | 2
Δ l O P L = λ 0 2 Δ ξ

Metrics