Abstract

We investigate the dispersion properties of leaky-mode resonance elements with emphasis on slow-light applications. Using particle swarm optimization, we design three exemplary bandpass leaky-mode devices. A single-layer silicon-on-insulator leaky-mode element shows a time-delay peak of ~8 ps at the resonance wavelength. A double membrane element exhibits an average delay of ~6 ps over ~0.75 nm spectral bandwidth with a relatively flat dispersion response. By cascading five double-membrane elements, we achieve an accumulative delay of ~30 ps with a very flat dispersion response over ~0.5 nm bandwidth. Thus, we show that delay elements based on leaky-mode resonance, by proper design, exhibit large amount of delay yet very flat dispersion over appreciable spectral bandwidths, making them potential candidates for optical buffers, delay lines, and switches.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, 1995.
  2. A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th edition, Oxford University Press, New York, 2007.
  3. K. Sakoda, Optical Properties of Photonic Crystals, Springer-Verlag, Berlin, 2001.
  4. P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
    [CrossRef]
  5. L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
    [CrossRef]
  6. E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33, 607–619 (1986).
  7. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
    [CrossRef]
  8. I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
    [CrossRef]
  9. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [CrossRef]
  10. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  11. Y. Ding, R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
    [CrossRef] [PubMed]
  12. Y. Ding, R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12(9), 1885–1891 (2004).
    [CrossRef] [PubMed]
  13. M. Shokooh-Saremi, R. Magnusson, “Wideband leaky-mode resonance reflectors: influence of grating profile and sublayers,” Opt. Express 16(22), 18249–18263 (2008).
    [CrossRef] [PubMed]
  14. G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
    [CrossRef]
  15. C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998).
    [CrossRef]
  16. G. Lenz, C. K. Madsen, “General optical all-pass filter structures for dispersion control,” J. Lightwave Technol. 17(7), 1248–1254 (1999).
    [CrossRef]
  17. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
    [CrossRef]
  18. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
    [CrossRef]
  19. E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photon. News, 40–45 (Nov. 2007).
  20. M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
    [CrossRef]
  21. F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  22. F. Schreier, M. Schmitz, O. Bryngdahl, “Pulse delay at diffractive structures under resonance conditions,” Opt. Lett. 23(17), 1337–1339 (1998).
    [CrossRef] [PubMed]
  23. M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39(17), 2871–2879 (2000).
    [CrossRef]
  24. S. Tibuleac, R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14(7), 1617–1626 (1997).
    [CrossRef]
  25. W. Suh, S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905–4907 (2004).
    [CrossRef]
  26. W. Nakagawa, R. Tyan, P. Sun, F. Xu, Y. Fainman, “Ultrashort pulse propagation in near-field periodic diffractive structures by use of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 18(5), 1072–1081 (2001).
    [CrossRef]
  27. T. Vallius, P. Vahimaa, J. Turunen, “Pulse deformations at guided-mode resonance filters,” Opt. Express 10(16), 840–843 (2002).
    [PubMed]
  28. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
    [CrossRef]
  29. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [CrossRef]
  30. R. Eberhart, and J. Kennedy, “Particle swarm optimization,” in Proceedings of IEEE Conference on Neural Networks (IEEE, 1995) 1942–1948.
  31. M. Shokooh-Saremi, R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32(8), 894–896 (2007).
    [CrossRef] [PubMed]

2008 (2)

M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

M. Shokooh-Saremi, R. Magnusson, “Wideband leaky-mode resonance reflectors: influence of grating profile and sublayers,” Opt. Express 16(22), 18249–18263 (2008).
[CrossRef] [PubMed]

2007 (2)

2005 (1)

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

2004 (3)

2002 (1)

2001 (2)

2000 (1)

1999 (2)

G. Lenz, C. K. Madsen, “General optical all-pass filter structures for dispersion control,” J. Lightwave Technol. 17(7), 1248–1254 (1999).
[CrossRef]

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

1998 (2)

C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998).
[CrossRef]

F. Schreier, M. Schmitz, O. Bryngdahl, “Pulse delay at diffractive structures under resonance conditions,” Opt. Lett. 23(17), 1337–1339 (1998).
[CrossRef] [PubMed]

1997 (1)

1995 (1)

1993 (1)

1992 (1)

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

1989 (1)

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

1986 (1)

E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33, 607–619 (1986).

1985 (3)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[CrossRef]

1979 (1)

P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

Beck, W. A.

Bruce, A. J.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

Bryngdahl, O.

Cappuzzo, M. A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

Chen, E.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

Ding, Y.

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

Fainman, Y.

Fan, S.

W. Suh, S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905–4907 (2004).
[CrossRef]

Gao, X.

Gasparyan, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

Gaylord, T. K.

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Gomez, L. T.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

Grann, E. B.

Griffin, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

Kasper, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

Kuramochi, E.

M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Laskowski, E. J.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

Le Grange, J.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

G. Lenz, C. K. Madsen, “General optical all-pass filter structures for dispersion control,” J. Lightwave Technol. 17(7), 1248–1254 (1999).
[CrossRef]

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998).
[CrossRef]

Madsen, C. K.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

G. Lenz, C. K. Madsen, “General optical all-pass filter structures for dispersion control,” J. Lightwave Technol. 17(7), 1248–1254 (1999).
[CrossRef]

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998).
[CrossRef]

Magnusson, R.

Mait, J. N.

Mashev, L.

E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33, 607–619 (1986).

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

Maystre, D.

E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33, 607–619 (1986).

Mirotznik, M. S.

Moharam, M. G.

Nakagawa, W.

Neviere, M.

P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Notomi, M.

M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Patel, S. S.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

Pommet, D. A.

Popov, E.

E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33, 607–619 (1986).

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

Prather, D. W.

Rasras, M. S.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

Schmitz, M.

Schreier, F.

Scotti, R. E.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

Sekaric, L.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Shi, S.

Shokooh-Saremi, M.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

Suh, W.

W. Suh, S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905–4907 (2004).
[CrossRef]

Sun, P.

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Sychugov, V. A.

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Tanabe, T.

M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Tibuleac, S.

Tishchenko, A. V.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Turunen, J.

Tyan, R.

Vahimaa, P.

Vallius, T.

Vincent, P.

P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Wang, S. S.

S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Wong-Foy, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xu, F.

Appl. Opt. (2)

Appl. Phys. (Berl.) (1)

P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Appl. Phys. Lett. (2)

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

W. Suh, S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905–4907 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998).
[CrossRef]

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nat. Photonics (2)

M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Opt. Acta (Lond.) (1)

E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33, 607–619 (1986).

Opt. Commun. (1)

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. IEEE (1)

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Other (5)

R. Eberhart, and J. Kennedy, “Particle swarm optimization,” in Proceedings of IEEE Conference on Neural Networks (IEEE, 1995) 1942–1948.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, 1995.

A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th edition, Oxford University Press, New York, 2007.

K. Sakoda, Optical Properties of Photonic Crystals, Springer-Verlag, Berlin, 2001.

E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photon. News, 40–45 (Nov. 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Flow chart of the computational procedure utilized to obtain the output pulse shapes in wavelength and time domains. FFT: Fast Fourier Transform, RCWA: Rigorous Coupled-Wave Analysis, and IFFT: Inverse Fast Fourier Transform.

Fig. 2
Fig. 2

A schematic view of a subwavelength guided-mode resonance element under normal incidence. A single layer with thickness d, fill factors Fi, and a multi-part period Λ is shown. I, R, and T denote the incident wave, reflectance, and transmittance, respectively. TE polarized light has its electric field vector normal to the plane of incidence.

Fig. 3
Fig. 3

(a) Transmittance, phase, delay, and dispersion of a 0.25 nm-wide (FWHM) SOI GMR transmission filter. Λ=979 nm, d = 465 nm, and [F1, F2, F3, F4] = [0.071, 0.275, 0.399, 0.255]. (b), (c) Response of this filter to excitation with a pulse in wavelength and time domains, respectively.

Fig. 4
Fig. 4

(a) Structure of a single-cavity GMR transmission filter. (b) Transmittance, phase, delay, and dispersion of the filter. Λ=1103.9 nm, d = 432.2 nm, [F1, F2, F3, F4] = [0.0626, 0.3013, 0.4576, 0.1785], and dcavity= 2000 nm.

Fig. 5
Fig. 5

Pulse response of the filter in Fig. 4. (a) Spectrum of the input pulse in relation to the filter spectrum. (b) Time domain response. FWHM of the input pulse is 20 ps.

Fig. 6
Fig. 6

(a) Transmittance, phase, delay, and dispersion of a five-cavity GMR transmission filter. Λ = 1103.9 nm, d = 432.2 nm, [F1, F2, F3, F4] = [0.0626, 0.3013, 0.4576, 0.1785], dCavity = 2000 nm, dB = 5000 nm, and NCavity = 5. Pulse response of this filter (b) in wavelength, and (c) in time domain. The output pulse experiences a ~30 ps delay with respect to the input pulse.

Fig. 7
Fig. 7

Schematic view of a conceptual implementation of an example GMR slow-light device. Multiple resonant units can be cascaded to realize a specified delay. Only three subunits, each based on two transversely-resonant GMR elements, are shown. Here, dD is the device thickness, dC is the cavity length, and dB is the buffer length. Other parameters are defined in Fig. 2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E y ( t ) = E 0 exp [ ( t t 0 ) 2 T 2 ] exp [ j ω 0 ( t t 0 ) ]
E R ( ω n ) = E y ( ω n ) R ( ω n )
E T ( ω n ) = E y ( ω n ) T ( ω n )
τ = ( λ 2 / 2 π c ) d ϕ / d λ
D = d τ / d λ

Metrics