Abstract

A novel on-chip spectrometer device using combined functionalities of a micro-ring resonator and a planar diffraction grating is proposed. We investigate the performance of this architecture by implementing it in a silicon-on-insulator platform. We experimentally demonstrate such a device with 100 channels, 0.1 nm channel spacing and a channel crosstalk less than -10 dB. The entire device occupies an area of less than 2 mm2. Based on our initial results we envision that this device enables the possibility of the realization of low-cost and high-resolution ultra-compact spectroscopy.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Nitkowski, L. Chen, and M. Lipson, "Cavity-enhanced on-chip absorption spectroscopy using microring resonators," Opt. Express 16, 11,930 (2008).
    [CrossRef]
  2. D. I. Ellis and R. Goodacre, "Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy," The Analyst 131, 875-885 (2006).
    [CrossRef] [PubMed]
  3. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy," Chem. Rev,  99, 2957-2976 (1999).
    [CrossRef]
  4. A. Mahadevan-Jansen, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31 (1996).
    [CrossRef]
  5. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chipbased ultrafast optical oscilloscope," Nature 456, 81-4 (2008).
    [CrossRef] [PubMed]
  6. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331-335 (2007).
    [CrossRef]
  7. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415 (2002).
    [CrossRef]
  8. R. Marz and C. Cremer, "On the theory of planar spectrographs," J. Lightwave Technol. 10, 2017-2022 (1992).
    [CrossRef]
  9. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and V. Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets," IEEE Photon. Technol. Lett. 20, 309-311 (2008).
    [CrossRef]
  10. Z. Shi, S. He, and S. Member, "A Three-Focal-Point Method for the Optimal Design of a Flat-Top Planar Waveguide Demultiplexer," IEEE J. Sel. Top. Quantum Electron. 8, 1179-1185 (2002).
    [CrossRef]
  11. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, "A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides," Opt. Express 15, 2299 (2007).
    [CrossRef] [PubMed]
  12. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87 (1990).
    [CrossRef]
  13. T. Fukazawa, F. Ohno, and T. Baba, "Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
    [CrossRef]
  14. S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
    [CrossRef]
  15. S.-T. Ho and D. Rafizadeh, "Semiconductor micro-resonator device," US Patent 6009115 (1999).
  16. M. Soltani, Q. Li, S. Yegnanrayanan, B. Momeni, A. A. Eftekhar and A. Adibi, "Large-scale Array of Small High-Q Microdisk Resonaotrs for On-chip Spectral Analysis," LEOS (2009).
  17. A. Vorckel, M. Monster, W. Henschel, P. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-oninsulator microring resonators for compact add-drop multiplexers," IEEE Photon. Techno. Lett. 15, 921-923 (2003).
    [CrossRef]
  18. C. Kaalund, "Critically coupled ring resonators for add-drop filtering," Opt. Commun. 237, 357-362 (2004).
    [CrossRef]
  19. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, "Low loss etchless silicon photonic waveguides," Opt. Express 17, 4752 (2009).
    [CrossRef] [PubMed]
  20. K. A. McGreer, "Theory of concave gratings based on a recursive definition of facet positions," Appl. Opt. 35, 5904 (1996).
    [CrossRef] [PubMed]
  21. N. Sherwood-Droz, H. Wang, L. Chen, B.G. Lee, A. Biberman, K. Bergman, and M. Lipson, "Optical 4x4 hitless silicon router for optical networks-on-chip (NoC)," Opt. Express 16, 15915 (2008).
    [CrossRef] [PubMed]

2009 (1)

2008 (4)

N. Sherwood-Droz, H. Wang, L. Chen, B.G. Lee, A. Biberman, K. Bergman, and M. Lipson, "Optical 4x4 hitless silicon router for optical networks-on-chip (NoC)," Opt. Express 16, 15915 (2008).
[CrossRef] [PubMed]

A. Nitkowski, L. Chen, and M. Lipson, "Cavity-enhanced on-chip absorption spectroscopy using microring resonators," Opt. Express 16, 11,930 (2008).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chipbased ultrafast optical oscilloscope," Nature 456, 81-4 (2008).
[CrossRef] [PubMed]

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and V. Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets," IEEE Photon. Technol. Lett. 20, 309-311 (2008).
[CrossRef]

2007 (2)

2006 (1)

D. I. Ellis and R. Goodacre, "Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy," The Analyst 131, 875-885 (2006).
[CrossRef] [PubMed]

2004 (2)

T. Fukazawa, F. Ohno, and T. Baba, "Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
[CrossRef]

C. Kaalund, "Critically coupled ring resonators for add-drop filtering," Opt. Commun. 237, 357-362 (2004).
[CrossRef]

2003 (2)

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
[CrossRef]

A. Vorckel, M. Monster, W. Henschel, P. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-oninsulator microring resonators for compact add-drop multiplexers," IEEE Photon. Techno. Lett. 15, 921-923 (2003).
[CrossRef]

2002 (2)

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415 (2002).
[CrossRef]

Z. Shi, S. He, and S. Member, "A Three-Focal-Point Method for the Optimal Design of a Flat-Top Planar Waveguide Demultiplexer," IEEE J. Sel. Top. Quantum Electron. 8, 1179-1185 (2002).
[CrossRef]

1999 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy," Chem. Rev,  99, 2957-2976 (1999).
[CrossRef]

1996 (2)

A. Mahadevan-Jansen, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31 (1996).
[CrossRef]

K. A. McGreer, "Theory of concave gratings based on a recursive definition of facet positions," Appl. Opt. 35, 5904 (1996).
[CrossRef] [PubMed]

1992 (1)

R. Marz and C. Cremer, "On the theory of planar spectrographs," J. Lightwave Technol. 10, 2017-2022 (1992).
[CrossRef]

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87 (1990).
[CrossRef]

Baba, T.

T. Fukazawa, F. Ohno, and T. Baba, "Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
[CrossRef]

Baets, R.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and V. Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets," IEEE Photon. Technol. Lett. 20, 309-311 (2008).
[CrossRef]

Bergman, K.

Biberman, A.

Bogaerts, W.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and V. Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets," IEEE Photon. Technol. Lett. 20, 309-311 (2008).
[CrossRef]

Bolivar, P.

A. Vorckel, M. Monster, W. Henschel, P. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-oninsulator microring resonators for compact add-drop multiplexers," IEEE Photon. Techno. Lett. 15, 921-923 (2003).
[CrossRef]

Brouckaert, J.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and V. Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets," IEEE Photon. Technol. Lett. 20, 309-311 (2008).
[CrossRef]

Cardenas, J.

Cheben, P.

Chen, L.

Conkey, D. B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331-335 (2007).
[CrossRef]

Cremer, C.

R. Marz and C. Cremer, "On the theory of planar spectrographs," J. Lightwave Technol. 10, 2017-2022 (1992).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy," Chem. Rev,  99, 2957-2976 (1999).
[CrossRef]

Delâge, A.

Densmore, A.

Dumon, P.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and V. Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets," IEEE Photon. Technol. Lett. 20, 309-311 (2008).
[CrossRef]

Ellis, D. I.

D. I. Ellis and R. Goodacre, "Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy," The Analyst 131, 875-885 (2006).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy," Chem. Rev,  99, 2957-2976 (1999).
[CrossRef]

Fercher, A. F.

Foster, M. A.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chipbased ultrafast optical oscilloscope," Nature 456, 81-4 (2008).
[CrossRef] [PubMed]

Fukazawa, T.

T. Fukazawa, F. Ohno, and T. Baba, "Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
[CrossRef]

Gaeta, A. L.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chipbased ultrafast optical oscilloscope," Nature 456, 81-4 (2008).
[CrossRef] [PubMed]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chipbased ultrafast optical oscilloscope," Nature 456, 81-4 (2008).
[CrossRef] [PubMed]

Goodacre, R.

D. I. Ellis and R. Goodacre, "Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy," The Analyst 131, 875-885 (2006).
[CrossRef] [PubMed]

Hawkins, A. R.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331-335 (2007).
[CrossRef]

He, S.

Z. Shi, S. He, and S. Member, "A Three-Focal-Point Method for the Optimal Design of a Flat-Top Planar Waveguide Demultiplexer," IEEE J. Sel. Top. Quantum Electron. 8, 1179-1185 (2002).
[CrossRef]

Henschel, W.

A. Vorckel, M. Monster, W. Henschel, P. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-oninsulator microring resonators for compact add-drop multiplexers," IEEE Photon. Techno. Lett. 15, 921-923 (2003).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy," Chem. Rev,  99, 2957-2976 (1999).
[CrossRef]

Janz, S.

Jin, G.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
[CrossRef]

Kaalund, C.

C. Kaalund, "Critically coupled ring resonators for add-drop filtering," Opt. Commun. 237, 357-362 (2004).
[CrossRef]

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87 (1990).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy," Chem. Rev,  99, 2957-2976 (1999).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy," Chem. Rev,  99, 2957-2976 (1999).
[CrossRef]

Kowalczyk, A.

Kurz, H.

A. Vorckel, M. Monster, W. Henschel, P. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-oninsulator microring resonators for compact add-drop multiplexers," IEEE Photon. Techno. Lett. 15, 921-923 (2003).
[CrossRef]

Lamontagne, B.

Lapointe, J.

Lee, B.G.

Leitgeb, R.

Lipson, M.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, "Low loss etchless silicon photonic waveguides," Opt. Express 17, 4752 (2009).
[CrossRef] [PubMed]

A. Nitkowski, L. Chen, and M. Lipson, "Cavity-enhanced on-chip absorption spectroscopy using microring resonators," Opt. Express 16, 11,930 (2008).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chipbased ultrafast optical oscilloscope," Nature 456, 81-4 (2008).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B.G. Lee, A. Biberman, K. Bergman, and M. Lipson, "Optical 4x4 hitless silicon router for optical networks-on-chip (NoC)," Opt. Express 16, 15915 (2008).
[CrossRef] [PubMed]

Lu, S.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
[CrossRef]

Mahadevan-Jansen, A.

A. Mahadevan-Jansen, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31 (1996).
[CrossRef]

Marz, R.

R. Marz and C. Cremer, "On the theory of planar spectrographs," J. Lightwave Technol. 10, 2017-2022 (1992).
[CrossRef]

McGreer, K. A.

Member, S.

Z. Shi, S. He, and S. Member, "A Three-Focal-Point Method for the Optimal Design of a Flat-Top Planar Waveguide Demultiplexer," IEEE J. Sel. Top. Quantum Electron. 8, 1179-1185 (2002).
[CrossRef]

Monster, M.

A. Vorckel, M. Monster, W. Henschel, P. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-oninsulator microring resonators for compact add-drop multiplexers," IEEE Photon. Techno. Lett. 15, 921-923 (2003).
[CrossRef]

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87 (1990).
[CrossRef]

Nitkowski, A.

A. Nitkowski, L. Chen, and M. Lipson, "Cavity-enhanced on-chip absorption spectroscopy using microring resonators," Opt. Express 16, 11,930 (2008).
[CrossRef]

Ohno, F.

T. Fukazawa, F. Ohno, and T. Baba, "Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
[CrossRef]

Poitras, C. B.

Post, E.

Preston, K.

Pun, E.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
[CrossRef]

Robinson, J. T.

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chipbased ultrafast optical oscilloscope," Nature 456, 81-4 (2008).
[CrossRef] [PubMed]

Schmid, J. H.

Schmidt, H.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331-335 (2007).
[CrossRef]

Selvaraja, S.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and V. Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets," IEEE Photon. Technol. Lett. 20, 309-311 (2008).
[CrossRef]

Sherwood-Droz, N.

Shi, Z.

Z. Shi, S. He, and S. Member, "A Three-Focal-Point Method for the Optimal Design of a Flat-Top Planar Waveguide Demultiplexer," IEEE J. Sel. Top. Quantum Electron. 8, 1179-1185 (2002).
[CrossRef]

Suzuki, S.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87 (1990).
[CrossRef]

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87 (1990).
[CrossRef]

Thourhout, V.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and V. Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets," IEEE Photon. Technol. Lett. 20, 309-311 (2008).
[CrossRef]

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chipbased ultrafast optical oscilloscope," Nature 456, 81-4 (2008).
[CrossRef] [PubMed]

Vorckel, A.

A. Vorckel, M. Monster, W. Henschel, P. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-oninsulator microring resonators for compact add-drop multiplexers," IEEE Photon. Techno. Lett. 15, 921-923 (2003).
[CrossRef]

Waldron, P.

Wang, D.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
[CrossRef]

Wang, H.

Wojtkowski, M.

Wong, W.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
[CrossRef]

Wu, B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331-335 (2007).
[CrossRef]

Xu, D.-X.

Yan, Y.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
[CrossRef]

Yang, W.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331-335 (2007).
[CrossRef]

Yi, D.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
[CrossRef]

Yin, D.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331-335 (2007).
[CrossRef]

Appl. Opt. (1)

Chem. Rev (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy," Chem. Rev,  99, 2957-2976 (1999).
[CrossRef]

Electron. Lett. (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Shi, S. He, and S. Member, "A Three-Focal-Point Method for the Optimal Design of a Flat-Top Planar Waveguide Demultiplexer," IEEE J. Sel. Top. Quantum Electron. 8, 1179-1185 (2002).
[CrossRef]

IEEE Photon. Techno. Lett. (1)

A. Vorckel, M. Monster, W. Henschel, P. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-oninsulator microring resonators for compact add-drop multiplexers," IEEE Photon. Techno. Lett. 15, 921-923 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and V. Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets," IEEE Photon. Technol. Lett. 20, 309-311 (2008).
[CrossRef]

J. Biomed. Opt. (1)

A. Mahadevan-Jansen, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31 (1996).
[CrossRef]

J. Lightwave Technol. (1)

R. Marz and C. Cremer, "On the theory of planar spectrographs," J. Lightwave Technol. 10, 2017-2022 (1992).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Fukazawa, F. Ohno, and T. Baba, "Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
[CrossRef]

Nat. Photonics (1)

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331-335 (2007).
[CrossRef]

Nature (1)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chipbased ultrafast optical oscilloscope," Nature 456, 81-4 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Kaalund, "Critically coupled ring resonators for add-drop filtering," Opt. Commun. 237, 357-362 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
[CrossRef]

The Analyst (1)

D. I. Ellis and R. Goodacre, "Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy," The Analyst 131, 875-885 (2006).
[CrossRef] [PubMed]

Other (2)

S.-T. Ho and D. Rafizadeh, "Semiconductor micro-resonator device," US Patent 6009115 (1999).

M. Soltani, Q. Li, S. Yegnanrayanan, B. Momeni, A. A. Eftekhar and A. Adibi, "Large-scale Array of Small High-Q Microdisk Resonaotrs for On-chip Spectral Analysis," LEOS (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Micrograph of the spectrometer with ring. Note that the ring resonator’s drop port is used as input of the grating spectrometer. (b) Close-up view of ring resonator. c) Zoom in the diffraction grating. The teeth opposite to the grating facets are used to decrease back reflection. d) Close-up view of the spectrometer output waveguides.

Fig. 2.
Fig. 2.

(a). Theoretical ring resonator input to drop port transmission spectrum (in black) and transmission spectrum of DG spectrometer for different channels. b) Theoretical transmission spectrum for the combined ring and diffraction grating spectrometer. The small peaks are due to the overlap of the residual transmission from the DG spectrometer with the neighboring resonances.

Fig. 3.
Fig. 3.

(a). Cavity resonance width at 1500 nm as function of drop efficiency for different waveguide losses. (b). Transmission spectrum for a combined ring and DG spectrometer compared to the through port transmission level.

Fig. 4.
Fig. 4.

(a). Space serialization schematic. Multiple devices are concatenated, where each device transmission spectrum is spectrally shifted. (b). Time serialization schematic. Same device is used to make the measurements but with shifted spectral transmission at each measurement.

Fig. 5.
Fig. 5.

Transmission spectrum for a combined ring and diffraction spectrometer using a time serialization technique for reducing channel spacing.

Fig. 6.
Fig. 6.

(a). Zoom-in of the transmission spectrum for waveguide 5 in Fig. 5. (b). Density plot of the transmission spectrum for a combined ring and diffraction spectrometer using a time serialization technique, where each horizontal line refers to a channel of the spectrometer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ FWHM = λ 2 π n g L [ ( τ τ η 1 τ η ) 1 2 ( τ τ η 1 τ η ) 1 2 ]

Metrics