Abstract

An all-optical regeneration scheme for DQPSK signals is proposed and analyzed. In the regenerator, an incoming DQPSK signal is demodulated to two parallel OOK signals by one-symbol delay interferometers. After the amplitude noise is removed by 2R (reamplifying and reshaping) regenerators and the power levels are suitably amplified, the OOK signals modulate the phase of clocked probe pulses in the subsequent all-optical phase modulators by which the noise-reduced (D)QPSK signal is generated. The alteration of phase data encoded on the pulses in the regeneration process can be undone by suitable encoding or decoding. Numerical simulation for short-pulse RZ-DQPSK signals at 160 Gbit/s (80 Gsymbol/s) shows that reduction in both phase and amplitude noise can be obtained by the regeneration scheme where fiber-based 2R amplitude regenerators and phase modulators using self- and cross-phase modulation, respectively, are employed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Leclerc, B. Lavigne, D. Chiaroni, and E. Desurvire, “All-optical regeneration: Principles and WDM implementation,” in Optical Fiber Telecommunications IV A, Components, I. Kaminow and T. Li, eds. (Academic Press, 2002), pp. 732–783.
  2. K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
    [CrossRef]
  3. A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplfication in fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
    [CrossRef]
  4. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
    [CrossRef]
  5. P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
    [CrossRef]
  6. M. Matsumoto and Y. Morioka, “Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber,” Opt. Express 17(8), 6913–6919 (2009).
    [CrossRef] [PubMed]
  7. V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, “Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals,” Electron. Lett. 41(18), 1021–1022 (2005).
    [CrossRef]
  8. P. Johannisson, G. Adolfsson, and M. Karlsson, “Suppression of phase error in differential phase-shift keying data by amplitude regeneration,” Opt. Lett. 31(10), 1385–1387 (2006).
    [CrossRef] [PubMed]
  9. C. C. Wei and J. J. Chen, “Convergence of phase noise in DPSK transmission systems by novel phase noise averagers,” Opt. Express 14(21), 9584–9593 (2006).
    [CrossRef] [PubMed]
  10. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]
  11. M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15(13), 8094–8103 (2007).
    [CrossRef] [PubMed]
  12. C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Cascaded phase-preserving amplitude regeneration in a DPSK transmission system,” 2009 European Conference on Optical Communication, paper 3.3.5 (2009).
  13. K.-P. Ho, Phase-modulated optical communication systems (Springer, 2005), pp. 301–333.
  14. Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281(10), 2755–2759 (2008).
    [CrossRef]
  15. M. Matsumoto, “A fiber-based all-optical regenerator for DQPSK signals,” 2007 European Conference on Optical Communication, paper P069 (2007).
  16. R. A. Griffin, and A. C. Carter, “Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission,” 2002 Optical Fiber Communication Conference, paper WX6 (2002).
  17. R. Elschner, A. M. de Melo, C.-A. Bunge, and K. Petermann, “Noise suppression properties of an interferometer-based regenerator for differential phase-shift keying data,” Opt. Lett. 32(2), 112–114 (2007).
    [CrossRef] [PubMed]
  18. R. Elschner, C.-A. Bunge, and K. Petermann, “All-optical regeneration of 100 Gb/s DPSK signal,” 2007 IEEE Lasers and Electro-Optics Society Annual Meeting, paper ThP3 (2007).
  19. J. Wang, Y. Jiao, R. Bonk, W. Freude, and J. Leuthold, “Regenerative properties of bulk and quantum dot SOA based all-optical Mach-Zehnder interferometer DPSK wavelength converters,” International Conference on Photonics in Switching 2006, paper 04.5 (2006).
  20. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” 1998 European Conference on Optical Communication, pp.475–476 (1998).
  21. M. Jinno, “All-optical signal regularizing/regeneration using a nonlinear fiber Sagnac interferometer switch with signal-clock walk-off,” J. Lightwave Technol. 12(9), 1648–1659 (1994).
    [CrossRef]
  22. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7(7), 1071–1082 (1989).
    [CrossRef]
  23. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
    [CrossRef] [PubMed]
  24. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
    [CrossRef] [PubMed]
  25. M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006).
    [CrossRef] [PubMed]
  26. S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett. 18(9), 1064–1066 (2006).
    [CrossRef]
  27. F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14(12), 5038–5044 (2006).
    [CrossRef] [PubMed]
  28. T. Tanemura, J. H. Lee, D. Wang, K. Katoh, and K. Kikuchi, “Polarization-insensitive 160-Gb/s wavelength converter with all-optical repolarizing function using circular-birefringence highly nonlinear fiber,” Opt. Express 14(4), 1408–1412 (2006).
    [CrossRef] [PubMed]
  29. S. Arahira, S. Sasaki, K. Tachibana, and Y. Ogawa, “All-optical 160-Gb/s clock extraction with a mode-locked laser diode module,” IEEE Photon. Technol. Lett. 16(6), 1558–1560 (2004).
    [CrossRef]
  30. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15(12), 7802–7809 (2007).
    [CrossRef] [PubMed]

2009

2008

K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281(10), 2755–2759 (2008).
[CrossRef]

2007

2006

M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006).
[CrossRef] [PubMed]

S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett. 18(9), 1064–1066 (2006).
[CrossRef]

F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14(12), 5038–5044 (2006).
[CrossRef] [PubMed]

T. Tanemura, J. H. Lee, D. Wang, K. Katoh, and K. Kikuchi, “Polarization-insensitive 160-Gb/s wavelength converter with all-optical repolarizing function using circular-birefringence highly nonlinear fiber,” Opt. Express 14(4), 1408–1412 (2006).
[CrossRef] [PubMed]

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplfication in fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[CrossRef]

P. Johannisson, G. Adolfsson, and M. Karlsson, “Suppression of phase error in differential phase-shift keying data by amplitude regeneration,” Opt. Lett. 31(10), 1385–1387 (2006).
[CrossRef] [PubMed]

C. C. Wei and J. J. Chen, “Convergence of phase noise in DPSK transmission systems by novel phase noise averagers,” Opt. Express 14(21), 9584–9593 (2006).
[CrossRef] [PubMed]

2005

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, “Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals,” Electron. Lett. 41(18), 1021–1022 (2005).
[CrossRef]

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
[CrossRef] [PubMed]

2004

S. Arahira, S. Sasaki, K. Tachibana, and Y. Ogawa, “All-optical 160-Gb/s clock extraction with a mode-locked laser diode module,” IEEE Photon. Technol. Lett. 16(6), 1558–1560 (2004).
[CrossRef]

1994

M. Jinno, “All-optical signal regularizing/regeneration using a nonlinear fiber Sagnac interferometer switch with signal-clock walk-off,” J. Lightwave Technol. 12(9), 1648–1659 (1994).
[CrossRef]

1990

1989

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7(7), 1071–1082 (1989).
[CrossRef]

Adolfsson, G.

An, L.

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281(10), 2755–2759 (2008).
[CrossRef]

Arahira, S.

S. Arahira, S. Sasaki, K. Tachibana, and Y. Ogawa, “All-optical 160-Gb/s clock extraction with a mode-locked laser diode module,” IEEE Photon. Technol. Lett. 16(6), 1558–1560 (2004).
[CrossRef]

Asimakis, S.

Bhardwaj, A.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Bogris, A.

A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplfication in fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[CrossRef]

Bornholdt, C.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Böttger, G.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Buhl (Larry), L. L.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Bunge, C.-A.

Cabot, S.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Cappuzzo, M. A.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Chen, J. J.

Chen, Y. F.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Croussore, K.

K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

de Melo, A. M.

Devgan, P.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, “Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals,” Electron. Lett. 41(18), 1021–1022 (2005).
[CrossRef]

Dinu, M.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Dorrer, C.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Dutta, N. K.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Eggleton, B. J.

Elschner, R.

Finot, C.

Foster, M. A.

Foy, A. W.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Freude, W.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Fu, L. B.

Gaeta, A. L.

Geraghty, D. F.

Giles, C. R.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Gomez, L.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Gordon, J. P.

Grigoryan, V. S.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, “Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals,” Electron. Lett. 41(18), 1021–1022 (2005).
[CrossRef]

Jaques, J.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Jinno, M.

M. Jinno, “All-optical signal regularizing/regeneration using a nonlinear fiber Sagnac interferometer switch with signal-clock walk-off,” J. Lightwave Technol. 12(9), 1648–1659 (1994).
[CrossRef]

Johannisson, P.

Kang, I.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Karlsson, M.

Katoh, K.

Kikuchi, K.

Koizumi, F.

Kumar, P.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, “Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals,” Electron. Lett. 41(18), 1021–1022 (2005).
[CrossRef]

Lee, J. H.

Leuthold, J.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Li, G.

K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

Li, Z.

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281(10), 2755–2759 (2008).
[CrossRef]

Lipson, M.

Liu, X.

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281(10), 2755–2759 (2008).
[CrossRef]

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Marculescu, A.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Matsumoto, M.

Mollenauer, L. F.

Morioka, Y.

Moss, D. J.

Mukasa, K.

Neilson, D. T.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Ogawa, Y.

S. Arahira, S. Sasaki, K. Tachibana, and Y. Ogawa, “All-optical 160-Gb/s clock extraction with a mode-locked laser diode module,” IEEE Photon. Technol. Lett. 16(6), 1558–1560 (2004).
[CrossRef]

Olsson, N. A.

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7(7), 1071–1082 (1989).
[CrossRef]

Parmigiani, F.

Patel, S. S.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Petermann, K.

Petropoulos, P.

Piccirilli, A.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Provost, L. A.

Rasras, M.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Richardson, D. J.

Rochette, M.

Salem, R.

Sanuki, K.

Sartorius, B.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Sasaki, S.

S. Arahira, S. Sasaki, K. Tachibana, and Y. Ogawa, “All-optical 160-Gb/s clock extraction with a mode-locked laser diode module,” IEEE Photon. Technol. Lett. 16(6), 1558–1560 (2004).
[CrossRef]

Schlak, M.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Schmidt, C.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Shahed, M.

S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett. 18(9), 1064–1066 (2006).
[CrossRef]

Shin, M.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, “Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals,” Electron. Lett. 41(18), 1021–1022 (2005).
[CrossRef]

Slovak, J.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Sugimoto, N.

Syvridis, D.

A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplfication in fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[CrossRef]

Ta’eed, V. G.

Tachibana, K.

S. Arahira, S. Sasaki, K. Tachibana, and Y. Ogawa, “All-optical 160-Gb/s clock extraction with a mode-locked laser diode module,” IEEE Photon. Technol. Lett. 16(6), 1558–1560 (2004).
[CrossRef]

Tanemura, T.

Tsadka, S.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Turner, A. C.

Vorreau, P.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Wang, D.

Wang, J.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

Wei, C. C.

Yamashita, S.

S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett. 18(9), 1064–1066 (2006).
[CrossRef]

Zhang, L.

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

Zhao, X.

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281(10), 2755–2759 (2008).
[CrossRef]

Zheng, Z.

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281(10), 2755–2759 (2008).
[CrossRef]

Electron. Lett.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, “Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals,” Electron. Lett. 41(18), 1021–1022 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the Dynamical Processes in All-Optical Signal Processing Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[CrossRef]

A. Bogris and D. Syvridis, “RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplfication in fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[CrossRef]

S. Yamashita and M. Shahed, “Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread,” IEEE Photon. Technol. Lett. 18(9), 1064–1066 (2006).
[CrossRef]

S. Arahira, S. Sasaki, K. Tachibana, and Y. Ogawa, “All-optical 160-Gb/s clock extraction with a mode-locked laser diode module,” IEEE Photon. Technol. Lett. 16(6), 1558–1560 (2004).
[CrossRef]

J. Lightwave Technol.

M. Jinno, “All-optical signal regularizing/regeneration using a nonlinear fiber Sagnac interferometer switch with signal-clock walk-off,” J. Lightwave Technol. 12(9), 1648–1659 (1994).
[CrossRef]

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7(7), 1071–1082 (1989).
[CrossRef]

Opt. Commun.

Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” Opt. Commun. 281(10), 2755–2759 (2008).
[CrossRef]

Opt. Express

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
[CrossRef] [PubMed]

T. Tanemura, J. H. Lee, D. Wang, K. Katoh, and K. Kikuchi, “Polarization-insensitive 160-Gb/s wavelength converter with all-optical repolarizing function using circular-birefringence highly nonlinear fiber,” Opt. Express 14(4), 1408–1412 (2006).
[CrossRef] [PubMed]

F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14(12), 5038–5044 (2006).
[CrossRef] [PubMed]

C. C. Wei and J. J. Chen, “Convergence of phase noise in DPSK transmission systems by novel phase noise averagers,” Opt. Express 14(21), 9584–9593 (2006).
[CrossRef] [PubMed]

M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006).
[CrossRef] [PubMed]

L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15(12), 7802–7809 (2007).
[CrossRef] [PubMed]

M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15(13), 8094–8103 (2007).
[CrossRef] [PubMed]

M. Matsumoto and Y. Morioka, “Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber,” Opt. Express 17(8), 6913–6919 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Other

C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Cascaded phase-preserving amplitude regeneration in a DPSK transmission system,” 2009 European Conference on Optical Communication, paper 3.3.5 (2009).

K.-P. Ho, Phase-modulated optical communication systems (Springer, 2005), pp. 301–333.

M. Matsumoto, “A fiber-based all-optical regenerator for DQPSK signals,” 2007 European Conference on Optical Communication, paper P069 (2007).

R. A. Griffin, and A. C. Carter, “Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission,” 2002 Optical Fiber Communication Conference, paper WX6 (2002).

R. Elschner, C.-A. Bunge, and K. Petermann, “All-optical regeneration of 100 Gb/s DPSK signal,” 2007 IEEE Lasers and Electro-Optics Society Annual Meeting, paper ThP3 (2007).

J. Wang, Y. Jiao, R. Bonk, W. Freude, and J. Leuthold, “Regenerative properties of bulk and quantum dot SOA based all-optical Mach-Zehnder interferometer DPSK wavelength converters,” International Conference on Photonics in Switching 2006, paper 04.5 (2006).

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” 1998 European Conference on Optical Communication, pp.475–476 (1998).

O. Leclerc, B. Lavigne, D. Chiaroni, and E. Desurvire, “All-optical regeneration: Principles and WDM implementation,” in Optical Fiber Telecommunications IV A, Components, I. Kaminow and T. Li, eds. (Academic Press, 2002), pp. 732–783.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Block diagram of the all-optical DQPSK signal regenerator.

Fig. 2
Fig. 2

DQPSK transmission systems without regenerators. (a) An precoder is inserted before the modulator. (b) A decoder is inserted after the detectors.

Fig. 3
Fig. 3

A DQPSK system where the all-optical regenerator (Reg) is inserted.

Fig. 4
Fig. 4

(a) Three-cascaded fiber-based amplitude regenerator. (b) Input and output wavelengths at each regeneration stage.

Fig. 5
Fig. 5

Eye patterns of input and output OOK pulse trains from the cascaded regenerator. (a): input pulses after one of the DIs, (b), (c), and (d): output pulses from the 1st, 2nd, and 3rd stages of the regenerator, respectively. Eye patterns are those after an electrical lowpass filter with cut-off frequency of 60GHz.

Fig. 6
Fig. 6

Constellation diagrams of (a), (c), (e) input and (b), (d), (f) output signals to and from the DQPSK regenerator. Input signal is degraded by ASE with OSNR (a), (b) 26dB/0.1nm, (c), (d) 24dB/0.1nm, and (e), (f) 22dB/0.1nm. Data rate is 160 Gbit/s (80 Gsymbol/s).

Fig. 7
Fig. 7

Waveforms of (a) DQPSK input signal (OSNR=24dB/0.1nm noise bandwidth), (b) demodulated signal after one of the DIs, (c) amplitude-regenerated signal after one of the cascaded 2R regenerators, and (d) output signal after the phase modulator.

Fig. 8
Fig. 8

Phase noise (standard deviation of phase fluctuation) of input and output (D)QPSK signals versus input OSNR. Dotted and dash-dotted curves are phase noise of input pulses obtained numerically and theoretically, respectively. Solid curves without marks, with circles, triangles, and diamonds are phase noise of output pulses whose phase is modulated by 3π/2, π, π/2, and 0 by the all-optical phase modulators in the regenerator.

Fig. 9
Fig. 9

Constellation diagrams of (a), (c) input and (b), (d) output signals to and from the DQPSK regenerator. Input signal is degraded by nonlinear phase noise with kNLP (a), (b) 0.1rad/mW and (c), (d) 0.19rad/mW. Input average signal power and OSNR are 1mW and 26dB/0.1nm. Data rate is 160 Gbit/s (80 Gsymbol/s).

Fig. 10
Fig. 10

Phase noise of input and output (D)QPSK signal versus nonlinear phase rotation coefficient. Dotted and solid curves are phase noise of input and output signals, respectively. The output phase noise variance is averaged over all the symbols.

Tables (2)

Tables Icon

Table 1 (a) Relation between Transition of (qn, pn), Symbol Phase Difference ϕnn-1, and Output Data (cn, dn) at the Detector, (b) Required Transition of (qn, pn) versus Input Data (an, bn) in the Precoder

Tables Icon

Table 2 (a) Relation between the Symbol Phase Difference before the Regenerator and the Absolute Phase after the Regenerator, (b) Required Transition of (xn, yn) in the Precoder 2

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E D I = [ E n i n exp ( i θ D I ) E n 1 i n ] / ( 2 2 ) ,
| E D I | 2 = 1 8 [ ( A s + Δ A n ) 2 + ( A s + Δ A n 1 ) 2 2 ( A s + Δ A n ) ( A s + Δ A n 1 ) cos ( ϕ n ϕ n 1 + θ D I + Δ ϕ n Δ ϕ n 1 ) ] .
| E D I | 2 = A s 2 4 [ 1 cos ( ϕ n ϕ n 1 + θ D I ) ] + A s 4 [ 1 cos ( ϕ n ϕ n 1 + θ D I ) ] ( Δ A n + Δ A n 1 ) + A s 2 4 sin ( ϕ n ϕ n 1 + θ D I ) ( Δ ϕ n Δ ϕ n 1 ) .
P D I , 1 = P H + A s ( 2 + 2 ) ( Δ A n + Δ A n 1 ) / 8 2 A s 2 ( Δ ϕ n Δ ϕ n 1 ) / 8 ,
P D I , 2 = P H + A s ( 2 + 2 ) ( Δ A n + Δ A n 1 ) / 8 + 2 A s 2 ( Δ ϕ n Δ ϕ n 1 ) / 8 .
P 2 R , 1 = P H + r [ A s ( 2 + 2 ) ( Δ A n + Δ A n 1 ) / 8 2 A s 2 ( Δ ϕ n Δ ϕ n 1 ) / 8 ] ,
P 2 R , 2 = P H + r [ A s ( 2 + 2 ) ( Δ A n + Δ A n 1 ) / 8 + 2 A s 2 ( Δ ϕ n Δ ϕ n 1 ) / 8 ] .
Δ ϕ o u t = ( π / P H ) r [ A s ( 2 + 2 ) ( Δ A n + Δ A n 1 ) / 8 2 A s 2 ( Δ ϕ n Δ ϕ n 1 ) / 8 ] + [ π / ( 2 P H ) ] r [ A s ( 2 + 2 ) ( Δ A n + Δ A n 1 ) / 8 + 2 A s 2 ( Δ ϕ n Δ ϕ n 1 ) / 8 ] = π r [ 3 ( Δ A n + Δ A n 1 ) / ( 2 A s ) ( 2 1 ) ( Δ ϕ n Δ ϕ n 1 ) / 2 ] .
σ ϕ o u t 2 = Δ ϕ o u t 2 = π 2 r 2 [ 9 σ A i n 2 / ( 2 A s 2 ) + ( 3 2 2 ) σ ϕ i n 2 / 2 ] ,
σ ϕ o u t 2 = π 2 r 2 [ 2 σ A i n 2 / A s 2 + 2 ( 3 2 2 ) σ ϕ i n 2 ] , ( ϕ n ϕ n 1 = π / 2 )
σ ϕ o u t 2 = π 2 r 2 [ σ A i n 2 / ( 2 A s 2 ) + ( 3 2 2 ) σ ϕ i n 2 / 2 ] . ( ϕ n ϕ n 1 = 3 π / 2 )
q n = a n b n q n 1 + a ¯ n b n p ¯ n 1 + a ¯ n b ¯ n q ¯ n 1 + a n b ¯ n p n 1 ,
p n = a n b n p n 1 + a ¯ n b n q n 1 + a ¯ n b ¯ n p ¯ n 1 + a n b ¯ n q ¯ n 1 .
2 e n 1 + i ( 2 f n 1 ) = 2 exp [ i ( Θ n 3 π / 4 ) ]
x n = q ¯ n p ¯ n x n 1 + q n p n y ¯ n 1 + q ¯ n p n x ¯ n 1 + q n p ¯ n y n 1 ,
y n = q ¯ n p ¯ n y n 1 + q n p n x n 1 + q ¯ n p n y ¯ n 1 + q n p ¯ n x ¯ n 1 .
Φ = 2 γ U / ( | D | Δ λ )
E s z = 2 i γ | E c ( τ δ z ) | 2 E s

Metrics