Abstract

We propose an efficient method to reduce the crosstalk, reflection and radiation at the crossing of two dielectric waveguides in a on-chip optical interconnect network. By increasing the vertical thickness of the guides locally in the crossing region, we create better mode-matching interfaces that dramatically reduce losses. The idea is demonstrated using numerical simulations. More than 95% crosstalk power reduction and 90% reflection power reduction are observed, while the radiation power can be reduced by 40%. The method is compatible with the planar integrated circuit technique.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Christie and D. Stroobandt, “The interpretation and application of Rent’s rule,” IEEE Trans. VLSI. Sys. 8, 639–648 (2000).
    [Crossref]
  2. M. Anis, “Advanced IC technology – opportunities and challenges,” in Circuits and Systems, IEEE International Symposiums, 776–779 (2008).
  3. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
    [Crossref]
  4. Z. Gaburro, Silicon Photonics, Optical Interconnect (Springer-Verlag Berlin, Germany, 2004).
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref] [PubMed]
  6. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
    [Crossref] [PubMed]
  7. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [Crossref] [PubMed]
  8. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
    [Crossref]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref] [PubMed]
  10. Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
    [Crossref] [PubMed]
  11. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14,765–14,771 (2007).
    [Crossref]
  12. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5mm radius,” Opt. Express 16, 4309–4315 (2008).
    [Crossref] [PubMed]
  13. O. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
    [Crossref]
  14. A. Bhatnagar, C. Debaes, H. Thienpont, and D. A. B. Miller, “Receiverless detection schemes for optical clock distribution,” Proc. SPIE 5359, 352–359 (2004).
    [Crossref]
  15. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Japanese J. Appl. Phys. 43, 646–647 (2004).
    [Crossref]
  16. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 32, 2801–2803 (2007).
    [Crossref] [PubMed]
  17. P. Sanchis, J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
    [Crossref]
  18. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
    [Crossref] [PubMed]
  19. http://ab-initio.mit.edu/wiki/index.php/Meep.
  20. R. E. Collin, Field theory of guided waves, 2nd Ed. (IEEE Press, Piscataway, NJ, 1991).

2008 (3)

M. Anis, “Advanced IC technology – opportunities and challenges,” in Circuits and Systems, IEEE International Symposiums, 776–779 (2008).

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5mm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref] [PubMed]

2007 (3)

W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 32, 2801–2803 (2007).
[Crossref] [PubMed]

P. Sanchis, J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14,765–14,771 (2007).
[Crossref]

2006 (3)

2005 (4)

O. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

2004 (3)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

A. Bhatnagar, C. Debaes, H. Thienpont, and D. A. B. Miller, “Receiverless detection schemes for optical clock distribution,” Proc. SPIE 5359, 352–359 (2004).
[Crossref]

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Japanese J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

2000 (1)

P. Christie and D. Stroobandt, “The interpretation and application of Rent’s rule,” IEEE Trans. VLSI. Sys. 8, 639–648 (2000).
[Crossref]

Anis, M.

M. Anis, “Advanced IC technology – opportunities and challenges,” in Circuits and Systems, IEEE International Symposiums, 776–779 (2008).

Baba, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Japanese J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

Baets, R.

Beausoleil, R. G.

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5mm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref] [PubMed]

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Bermel, P.

Bhatnagar, A.

A. Bhatnagar, C. Debaes, H. Thienpont, and D. A. B. Miller, “Receiverless detection schemes for optical clock distribution,” Proc. SPIE 5359, 352–359 (2004).
[Crossref]

Bogaerts, W.

Bowers, J. E.

Burr, G.

Cannon, D. D.

O. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

Christie, P.

P. Christie and D. Stroobandt, “The interpretation and application of Rent’s rule,” IEEE Trans. VLSI. Sys. 8, 639–648 (2000).
[Crossref]

Cohen, O.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Collin, R. E.

R. E. Collin, Field theory of guided waves, 2nd Ed. (IEEE Press, Piscataway, NJ, 1991).

Debaes, C.

A. Bhatnagar, C. Debaes, H. Thienpont, and D. A. B. Miller, “Receiverless detection schemes for optical clock distribution,” Proc. SPIE 5359, 352–359 (2004).
[Crossref]

Dosunmu, O.

O. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

Dumon, P.

Emsley, M. K.

O. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Fang, A. W.

Farjadpour, A.

Fattal, D.

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Japanese J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

Gaburro, Z.

Z. Gaburro, Silicon Photonics, Optical Interconnect (Springer-Verlag Berlin, Germany, 2004).

Galn, J. V.

P. Sanchis, J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Ge, S. R. Y.

Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Griol, A.

P. Sanchis, J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Harris, J. S.

Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Japanese J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

Ibanescu, M.

Joannopoulos, J. D.

Johnson, S. G.

Jones, R.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Kamins, T. I.

Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Khan, M. H.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14,765–14,771 (2007).
[Crossref]

Kimerling, L. C.

O. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

Kuekes, P. J.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Kuo, Y.

Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Lee, Y.

Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

Mart, J.

P. Sanchis, J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Miller, D. A. B.

Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

A. Bhatnagar, C. Debaes, H. Thienpont, and D. A. B. Miller, “Receiverless detection schemes for optical clock distribution,” Proc. SPIE 5359, 352–359 (2004).
[Crossref]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Ohno, F.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Japanese J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Paniccia, M. J.

Park, H.

Perdigues, J. M.

P. Sanchis, J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Piqueras, M. A.

P. Sanchis, J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Qi, M.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14,765–14,771 (2007).
[Crossref]

Rodriguez, A.

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Roth, J. E.

Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Roundy, D.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Sanchis, P.

P. Sanchis, J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Shen, H.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14,765–14,771 (2007).
[Crossref]

Snider, G. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Stroobandt, D.

P. Christie and D. Stroobandt, “The interpretation and application of Rent’s rule,” IEEE Trans. VLSI. Sys. 8, 639–648 (2000).
[Crossref]

Thienpont, H.

A. Bhatnagar, C. Debaes, H. Thienpont, and D. A. B. Miller, “Receiverless detection schemes for optical clock distribution,” Proc. SPIE 5359, 352–359 (2004).
[Crossref]

Thourhout, D. V.

Unlu, M. S.

O. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

Wang, S.-Y.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

Williams, R. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Xiao, S.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14,765–14,771 (2007).
[Crossref]

Xu, Q.

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5mm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

O. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

P. Sanchis, J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

IEEE Trans. VLSI. Sys. (1)

P. Christie and D. Stroobandt, “The interpretation and application of Rent’s rule,” IEEE Trans. VLSI. Sys. 8, 639–648 (2000).
[Crossref]

Japanese J. Appl. Phys. (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Japanese J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

Nature (4)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Proc. IEEE (1)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]

Proc. SPIE (1)

A. Bhatnagar, C. Debaes, H. Thienpont, and D. A. B. Miller, “Receiverless detection schemes for optical clock distribution,” Proc. SPIE 5359, 352–359 (2004).
[Crossref]

Other (4)

http://ab-initio.mit.edu/wiki/index.php/Meep.

R. E. Collin, Field theory of guided waves, 2nd Ed. (IEEE Press, Piscataway, NJ, 1991).

Z. Gaburro, Silicon Photonics, Optical Interconnect (Springer-Verlag Berlin, Germany, 2004).

M. Anis, “Advanced IC technology – opportunities and challenges,” in Circuits and Systems, IEEE International Symposiums, 776–779 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The first row gives the geometries of the crossings: (a), the original crossing; (b), the modified crossing with one dielectric block on the top and the other at the bottom; (c), the modified crossing with only one block on the top. Each crossing can be described as two interfaces, and the middle row depict one of the interfaces corresponding to each crossing: (a′), an interface between an incident waveguide and a slab; (b′), an interface between an incident waveguide and a slab with one bar on the top and the other at the bottom; (c′), similar to b′, but with only one bar on the top. When the right hand side of each interface is cut at a distance b (the width of the waveguide) and mounted with an exiting waveguide, they give the original or the modified crossing(s). The bottom row gives the instantaneous Hz distribution when a guided mode in the waveguide hits the interface, for the corresponding situations shown in the second row. The field distributions shown here are on the plane that is parallel to the x̂ – ŷ plane and cut the waveguides in half.

Fig. 2.
Fig. 2.

The structures considered in the problem and the shape of the guided mode they support, respectively. (a), a waveguide of 250nm × 500nm cross section. (b), an infinite slab of 250nm thick. (c), an infinite slab of 250nm thick, with a bar of 50nm×500nm on the top and at the bottom. (d), similar to (c) but with only one bar on the top. The mode shape plots give the magnitude of the Poynting vector along the propagation direction of the mode. All the structures are made of Si (n = 3.6) buried in a host medium of SiO2 (n = 1.4)

Fig. 3.
Fig. 3.

The simulation results for the modified crossing with two blocks placed above and below symmetrically (identified as Symmetric in the plots), and the modified crossing with only one block (identified as Asymmetric in the plots). Crosstalk and reflection shown in (a), and the transmission and radiation shown in (b), are given as the percentage of the power in the incident guided mode.

Fig. 4.
Fig. 4.

The instantaneous Hz distribution for (a) the original crossing, and (b) the modified crossing with two blocks of optimized thickness 175nm, on thex̂ – ŷ plane that goes through the middle of the waveguides. Refer to Fig. 1(a) and Fig. 1(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E i , i i ( x ) = a i , i i E g ( x ) + k r , k t b i , i i ( k t ) E r ( x , k t )
a i , i i = 1 p g x E i , i i ( x ) × H g * ( x ) d x

Metrics