Abstract

A kind of Mach-Zehnder optical switch with a dual-bus coupled ring resonator as a two-beam interferometer is proposed and investigated. The analysis based on the transfer matrix method shows that a sharp asymmetric Fano line shape can be generated in the transmission spectra of such a configuration, which can be used to significantly reduce the phase change required for switching. Meanwhile, it can also be found that complete extinctions can be achieved in both switching states if the structural parameters are carefully chosen and the phase bias is properly set. Through tuning the phase difference between the arms of the Mach-Zehnder interferometer, complete extinction can be easily kept within a large range of the ring-bus coupling ratios in the OFF state. By properly modulating the phase change in the ring waveguide, the shift of the resonant frequency and the asymmetry of the transmission spectra can be controlled to finally enable optical switching with a high extinction ratio, even complete extinction, in the ON state. The switching functionality is verified by the finite-difference time-domain simulation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  2. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  3. C. Kochar, A. Kodi, and A. Louri, "Proposed low-power high-speed microring resonator-based switching technique for dynamically reconfigurable optical interconnects," IEEE Photon. Technol. Lett. 19, 1304-1306 (2007).
    [CrossRef]
  4. Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, "Optical cross-connect circuit using hitless wavelength selective switch," Opt. Express 16, 535-548 (2008).
    [CrossRef] [PubMed]
  5. Y. Z. Sun and X. D. Fan, "Analysis of ring resonators for chemical vapor sensor development," Opt. Express 16, 10254-10268 (2008).
    [CrossRef] [PubMed]
  6. G. Lenz and C. K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems," J. Lightwave Technol. 17, 1248-1254 (1999).
    [CrossRef]
  7. J. Y. Yang, F. Wang, X. Q. Jiang, H. C. Qu, M. H. Wang, and Y. L. Wang, "Influence of loss on linearity of microring-assisted Mach-Zehnder modulator," Opt. Express 12, 4178-4188 (2004).
    [CrossRef] [PubMed]
  8. X. B. Xie, J. Khurgin, J. Kang, and F. S. Chow, "Linearized Mach-Zehnder intensity modulator," IEEE Photon. Technol. Lett. 15, 531-533 (2003).
    [CrossRef]
  9. J. F. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI," Opt. Express 16, 21476-21482 (2008).
    [CrossRef] [PubMed]
  10. S. Y. Cho and R. Soref, "Interferometric microring-resonant 2x2 optical switches," Opt. Express 16, 13304-13314 (2008).
    [CrossRef] [PubMed]
  11. S. H. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003).
    [CrossRef]
  12. L. Y. Mario, S. Darmawan, and M. K. Chin, "Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching," Opt. Express 14, 12770-12781 (2006).
    [CrossRef] [PubMed]
  13. L. J. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. 32, 781-783 (2007).
    [CrossRef] [PubMed]
  14. Y. Lu, J. Q. Yao, X. F. Li, and P. Wang, "Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer," Opt. Lett. 30, 3069-3071 (2005).
    [CrossRef] [PubMed]
  15. R. G. J. Heebner, and T. Ibrahim, Optical Microresonators (Springer, 2008).
  16. F. Xu and A. W. Poon, "Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings," Opt. Express 16, 8649-8657 (2008).
    [CrossRef] [PubMed]
  17. C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
    [CrossRef]

2008 (5)

2007 (2)

L. J. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. 32, 781-783 (2007).
[CrossRef] [PubMed]

C. Kochar, A. Kodi, and A. Louri, "Proposed low-power high-speed microring resonator-based switching technique for dynamically reconfigurable optical interconnects," IEEE Photon. Technol. Lett. 19, 1304-1306 (2007).
[CrossRef]

2006 (1)

2005 (2)

2004 (1)

2003 (2)

S. H. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003).
[CrossRef]

X. B. Xie, J. Khurgin, J. Kang, and F. S. Chow, "Linearized Mach-Zehnder intensity modulator," IEEE Photon. Technol. Lett. 15, 531-533 (2003).
[CrossRef]

1999 (2)

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

G. Lenz and C. K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems," J. Lightwave Technol. 17, 1248-1254 (1999).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Chin, M. K.

Cho, S. Y.

Chow, F. S.

X. B. Xie, J. Khurgin, J. Kang, and F. S. Chow, "Linearized Mach-Zehnder intensity modulator," IEEE Photon. Technol. Lett. 15, 531-533 (2003).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Darmawan, S.

Fan, S. H.

S. H. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003).
[CrossRef]

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Fan, X. D.

Fang, Q.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Goebuchi, Y.

Haus, H. A.

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Hisada, M.

Jiang, X. Q.

Joannopoulos, J. D.

S. H. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003).
[CrossRef]

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Kang, J.

X. B. Xie, J. Khurgin, J. Kang, and F. S. Chow, "Linearized Mach-Zehnder intensity modulator," IEEE Photon. Technol. Lett. 15, 531-533 (2003).
[CrossRef]

Kato, T.

Khan, M. J.

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Khurgin, J.

X. B. Xie, J. Khurgin, J. Kang, and F. S. Chow, "Linearized Mach-Zehnder intensity modulator," IEEE Photon. Technol. Lett. 15, 531-533 (2003).
[CrossRef]

Kochar, C.

C. Kochar, A. Kodi, and A. Louri, "Proposed low-power high-speed microring resonator-based switching technique for dynamically reconfigurable optical interconnects," IEEE Photon. Technol. Lett. 19, 1304-1306 (2007).
[CrossRef]

Kodi, A.

C. Kochar, A. Kodi, and A. Louri, "Proposed low-power high-speed microring resonator-based switching technique for dynamically reconfigurable optical interconnects," IEEE Photon. Technol. Lett. 19, 1304-1306 (2007).
[CrossRef]

Kokubun, Y.

Kwong, D. L.

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lenz, G.

Li, X. F.

Liow, T. Y.

Lipson, M.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lo, G. Q.

Louri, A.

C. Kochar, A. Kodi, and A. Louri, "Proposed low-power high-speed microring resonator-based switching technique for dynamically reconfigurable optical interconnects," IEEE Photon. Technol. Lett. 19, 1304-1306 (2007).
[CrossRef]

Lu, Y.

Madsen, C. K.

Manolatou, C.

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Mario, L. Y.

Poon, A. W.

Pradhan, S.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Qu, H. C.

Schmidt, B.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Song, J. F.

Soref, R.

Suh, W.

Sun, Y. Z.

Tao, S. H.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Wang, F.

Wang, M. H.

Wang, P.

Wang, Y. L.

Xie, X. B.

X. B. Xie, J. Khurgin, J. Kang, and F. S. Chow, "Linearized Mach-Zehnder intensity modulator," IEEE Photon. Technol. Lett. 15, 531-533 (2003).
[CrossRef]

Xu, F.

Xu, Q. F.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Yang, J. Y.

Yao, J. Q.

Yu, M. B.

Zhao, H.

Zhou, L. J.

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. Kochar, A. Kodi, and A. Louri, "Proposed low-power high-speed microring resonator-based switching technique for dynamically reconfigurable optical interconnects," IEEE Photon. Technol. Lett. 19, 1304-1306 (2007).
[CrossRef]

X. B. Xie, J. Khurgin, J. Kang, and F. S. Chow, "Linearized Mach-Zehnder intensity modulator," IEEE Photon. Technol. Lett. 15, 531-533 (2003).
[CrossRef]

J. Lightwave Technol. (2)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

G. Lenz and C. K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems," J. Lightwave Technol. 17, 1248-1254 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Other (1)

R. G. J. Heebner, and T. Ibrahim, Optical Microresonators (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of (a) the Mach-Zehnder optical switch with a cross-ring resonator coupled to the both arms, and the cross ring equivalently represented by the dual-bus-coupled ring resonator in (b). MP: mirror plane. CRR: cross-ring resonator. PS: phase shifter. BS: beam splitter. CZ: coupling zone. PBC: phase bias controller.

Fig. 2.
Fig. 2.

(a) The transmission spectra versus the round-trip phase φ when the phase difference δ = 0, the ring-bus amplitude transmission coefficients c 1= 0.9 and c 2 = 0.8, 0.85 and 0.9; the transmission spectra (b) I o1 +I o2, (c) I o1 and (d) I o2 versus the round-trip phase φ, when the phase difference δ varies from 0 to π, the ring-bus amplitude transmission coefficients c 1=0.9 and c 2=0.8.

Fig. 3.
Fig. 3.

(a) A contour map of the phase deviation Δφ versus the ring-bus amplitude transmission coefficients c 1 and c 2, with the points labeled A–F of which the transmission spectra are shown in (b).

Fig. 4.
Fig. 4.

A contour map of the phase deviation Δφ versus the ring-bus amplitude transmission coefficients c 1 and c 2, when the round-trip amplitude attenuation factor γ =0.85.

Fig. 5.
Fig. 5.

The transmission spectra I o1 and I o2, when the phase difference δ=-0.41π, the ring-bus amplitude transmission coefficients c 1 = 0.896 and c 2 = 0.869, and the phase change φd varies from 0 to −0.75π.

Fig. 6.
Fig. 6.

The ring-bus amplitude transmission coefficients c 1 and c 2, the phase difference δ, and the phase deviation Δφ versus the phase change φd , when the round-trip amplitude attenuation factor γ = 0.99.

Fig. 7.
Fig. 7.

The transmitted powers I o 2 in the OFF state and I o1 in the ON state versus the phase change φd , when the round-trip amplitude attenuation factor γ = 0.99.

Fig. 8.
Fig. 8.

The transmission spectra I o1 and I o2 (a) when the refractive index change Δn = 0, (b) when Δn = 0.052, and the corresponding filed distributions when the wavelength λ = 1.591μm. Fit parameters: the effective index neff = 2.78, the phase change φd = 0.155π. TMM: transfer matrix method. PS: phase shifter.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E o 1 = c 1 c 2 γ exp ( ) 1 c 1 c 2 γ exp ( ) E i 1 + s 1 s 2 γ n exp ( j φ 2 ) 1 c 1 c 2 γ exp ( ) E i 2 ,
E o 2 = s 1 s 2 γ m exp ( j φ 1 ) 1 c 1 c 2 γ exp ( ) E i 1 + c 2 c 1 γ exp ( ) 1 c 1 c 2 γ exp ( ) E i 2 ,
E i 2 = c 1 c 2 γ exp ( j Δ φ ) s 1 s 2 γ 0.5 exp ( 0.5 j Δ φ ) E i 1 .
c 2 γ exp ( j Δ φ ) = c 1 s 1 s 2 γ 0.5 exp [ j ( δ + 0.5 Δ φ ) ] .
( 1 c 1 c 2 ) / c 1 c 2 = 2 ,
( 1 + c 1 c 2 ) / c 1 + c 2 = 2 .
ξ o 1 = ξ o 2 = s 1 s 2 ( c 1 + c 2 ) sin ( δ ) ( 1 c 1 c 2 ) 2 .
E i 1 = c 2 c 1 γ exp [ j ( Δ φ + φ d ) ] s 1 s 2 γ 0.5 exp ( 0.5 j Δ φ ) E i 2 .
{ c 2 c 1 γ exp [ j ( Δ φ + φ d ) ] } [ c 1 c 2 γ exp ( j Δ φ ) ] s 1 2 s 2 2 γ exp ( j Δ φ ) = 1 .

Metrics