Abstract

Light confinement to sub-wavelength spot sizes is proposed and realized in tapered optical fibers. To achieve high transmission efficiencies, light propagating along the taper is combined with the excitation of surface plasmon polaritons (SPP) at its tip.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994).
    [CrossRef]
  2. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29,1209-1211 (2004).
    [CrossRef] [PubMed]
  3. V. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetical permeabilities," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  4. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  5. D. O. S. Melville, and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
    [CrossRef] [PubMed]
  6. H. Heinzelmann and D. W. Pohl, "Scanning near-field optical microscopy," Appl. Phys. A 59, 89 (1994).
    [CrossRef]
  7. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 (2000).
    [CrossRef]
  8. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
    [CrossRef]
  9. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
    [CrossRef] [PubMed]
  10. R. Rokitski, K. A. Tetz, and Y. Fainman, "Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization," Phys. Rev. Lett. 95, 177401 (2005).
    [CrossRef] [PubMed]
  11. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, " Dielectric optical elements for surface plasmons," Opt. Lett. 30, 893-895 (2005).
    [CrossRef] [PubMed]
  12. L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91, 081101 (2007).
    [CrossRef]
  13. H. F.  Ghaemi, T.  Thio, D. E.  Grupp, T. W.  Ebbesen, and H. J.  Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B  58, 6779-6782 (1998).
    [CrossRef]
  14. J. D.  Love, W. M.  Henry, W. J.  Stewart, R. J.  Black, S.  Lacroix, and F.  Gonthier, "Tapered Single-mode Fibres and Devices Part 1: Adiabaticity Criteria," IEE Proc. J.: Optoelectron.  138, 343-354 (1991).
    [CrossRef]
  15. R. J.  Black, S.  Lacroix, F.  Gonthier, and J. D.  Love, "Tapered single-mode fibres and devices - Part 2: Experimental and theoretical quantification," IEE Proc. J.: Optoelectron.  138, 355-364 (1991).
    [CrossRef]
  16. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  17. Y. Jung, G. Brambilla, and D. J. Richardson, "Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter," Opt. Express 16, 14661-14667 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-19-14661.
    [CrossRef] [PubMed]

2008

2007

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

2005

D. O. S. Melville, and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

R. Rokitski, K. A. Tetz, and Y. Fainman, "Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization," Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, " Dielectric optical elements for surface plasmons," Opt. Lett. 30, 893-895 (2005).
[CrossRef] [PubMed]

2004

2000

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

1998

H. F.  Ghaemi, T.  Thio, D. E.  Grupp, T. W.  Ebbesen, and H. J.  Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B  58, 6779-6782 (1998).
[CrossRef]

1994

H. Heinzelmann and D. W. Pohl, "Scanning near-field optical microscopy," Appl. Phys. A 59, 89 (1994).
[CrossRef]

D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

1991

J. D.  Love, W. M.  Henry, W. J.  Stewart, R. J.  Black, S.  Lacroix, and F.  Gonthier, "Tapered Single-mode Fibres and Devices Part 1: Adiabaticity Criteria," IEE Proc. J.: Optoelectron.  138, 343-354 (1991).
[CrossRef]

R. J.  Black, S.  Lacroix, F.  Gonthier, and J. D.  Love, "Tapered single-mode fibres and devices - Part 2: Experimental and theoretical quantification," IEE Proc. J.: Optoelectron.  138, 355-364 (1991).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1968

V. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetical permeabilities," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Almeida, V. R.

Aussenegg, F. R.

Bainier, C.

D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

Barrios, C. A.

Black, R. J.

J. D.  Love, W. M.  Henry, W. J.  Stewart, R. J.  Black, S.  Lacroix, and F.  Gonthier, "Tapered Single-mode Fibres and Devices Part 1: Adiabaticity Criteria," IEE Proc. J.: Optoelectron.  138, 343-354 (1991).
[CrossRef]

R. J.  Black, S.  Lacroix, F.  Gonthier, and J. D.  Love, "Tapered single-mode fibres and devices - Part 2: Experimental and theoretical quantification," IEE Proc. J.: Optoelectron.  138, 355-364 (1991).
[CrossRef]

Blaikie, R. J.

Brambilla, G.

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Courjon, D.

D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Ditlbacher, H.

Drezet, A.

Ebbesen, T. W.

H. F.  Ghaemi, T.  Thio, D. E.  Grupp, T. W.  Ebbesen, and H. J.  Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B  58, 6779-6782 (1998).
[CrossRef]

Fainman, Y.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

R. Rokitski, K. A. Tetz, and Y. Fainman, "Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization," Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef] [PubMed]

Feng, L.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

Ghaemi, H. F.

H. F.  Ghaemi, T.  Thio, D. E.  Grupp, T. W.  Ebbesen, and H. J.  Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B  58, 6779-6782 (1998).
[CrossRef]

Gonthier, F.

R. J.  Black, S.  Lacroix, F.  Gonthier, and J. D.  Love, "Tapered single-mode fibres and devices - Part 2: Experimental and theoretical quantification," IEE Proc. J.: Optoelectron.  138, 355-364 (1991).
[CrossRef]

J. D.  Love, W. M.  Henry, W. J.  Stewart, R. J.  Black, S.  Lacroix, and F.  Gonthier, "Tapered Single-mode Fibres and Devices Part 1: Adiabaticity Criteria," IEE Proc. J.: Optoelectron.  138, 343-354 (1991).
[CrossRef]

Grupp, D. E.

H. F.  Ghaemi, T.  Thio, D. E.  Grupp, T. W.  Ebbesen, and H. J.  Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B  58, 6779-6782 (1998).
[CrossRef]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Heinzelmann, H.

H. Heinzelmann and D. W. Pohl, "Scanning near-field optical microscopy," Appl. Phys. A 59, 89 (1994).
[CrossRef]

Henry, W. M.

J. D.  Love, W. M.  Henry, W. J.  Stewart, R. J.  Black, S.  Lacroix, and F.  Gonthier, "Tapered Single-mode Fibres and Devices Part 1: Adiabaticity Criteria," IEE Proc. J.: Optoelectron.  138, 343-354 (1991).
[CrossRef]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Hohenau, A.

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Jung, Y.

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

Lacroix, S.

J. D.  Love, W. M.  Henry, W. J.  Stewart, R. J.  Black, S.  Lacroix, and F.  Gonthier, "Tapered Single-mode Fibres and Devices Part 1: Adiabaticity Criteria," IEE Proc. J.: Optoelectron.  138, 343-354 (1991).
[CrossRef]

R. J.  Black, S.  Lacroix, F.  Gonthier, and J. D.  Love, "Tapered single-mode fibres and devices - Part 2: Experimental and theoretical quantification," IEE Proc. J.: Optoelectron.  138, 355-364 (1991).
[CrossRef]

Leitner, A.

Lezec, H. J.

H. F.  Ghaemi, T.  Thio, D. E.  Grupp, T. W.  Ebbesen, and H. J.  Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B  58, 6779-6782 (1998).
[CrossRef]

Lipson, M.

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef]

Lomakin, V.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

Love, J. D.

J. D.  Love, W. M.  Henry, W. J.  Stewart, R. J.  Black, S.  Lacroix, and F.  Gonthier, "Tapered Single-mode Fibres and Devices Part 1: Adiabaticity Criteria," IEE Proc. J.: Optoelectron.  138, 343-354 (1991).
[CrossRef]

R. J.  Black, S.  Lacroix, F.  Gonthier, and J. D.  Love, "Tapered single-mode fibres and devices - Part 2: Experimental and theoretical quantification," IEE Proc. J.: Optoelectron.  138, 355-364 (1991).
[CrossRef]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Melville, D. O. S.

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

H. Heinzelmann and D. W. Pohl, "Scanning near-field optical microscopy," Appl. Phys. A 59, 89 (1994).
[CrossRef]

Richardson, D. J.

Rokitski, R.

R. Rokitski, K. A. Tetz, and Y. Fainman, "Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization," Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef] [PubMed]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Slutsky, B.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef]

Steinberger, B.

Stepanov, A. L.

Stewart, W. J.

J. D.  Love, W. M.  Henry, W. J.  Stewart, R. J.  Black, S.  Lacroix, and F.  Gonthier, "Tapered Single-mode Fibres and Devices Part 1: Adiabaticity Criteria," IEE Proc. J.: Optoelectron.  138, 343-354 (1991).
[CrossRef]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef]

Tetz, K. A.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

R. Rokitski, K. A. Tetz, and Y. Fainman, "Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization," Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef] [PubMed]

Thio, T.

H. F.  Ghaemi, T.  Thio, D. E.  Grupp, T. W.  Ebbesen, and H. J.  Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B  58, 6779-6782 (1998).
[CrossRef]

Veselago, V.

V. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetical permeabilities," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Xu, Q.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef]

Appl. Phys. A

H. Heinzelmann and D. W. Pohl, "Scanning near-field optical microscopy," Appl. Phys. A 59, 89 (1994).
[CrossRef]

Appl. Phys. Lett.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91, 081101 (2007).
[CrossRef]

IEE Proc. J.: Optoelectron.

J. D.  Love, W. M.  Henry, W. J.  Stewart, R. J.  Black, S.  Lacroix, and F.  Gonthier, "Tapered Single-mode Fibres and Devices Part 1: Adiabaticity Criteria," IEE Proc. J.: Optoelectron.  138, 343-354 (1991).
[CrossRef]

R. J.  Black, S.  Lacroix, F.  Gonthier, and J. D.  Love, "Tapered single-mode fibres and devices - Part 2: Experimental and theoretical quantification," IEE Proc. J.: Optoelectron.  138, 355-364 (1991).
[CrossRef]

J. Chem. Phys.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Nano Lett.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

H. F.  Ghaemi, T.  Thio, D. E.  Grupp, T. W.  Ebbesen, and H. J.  Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B  58, 6779-6782 (1998).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

R. Rokitski, K. A. Tetz, and Y. Fainman, "Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization," Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef] [PubMed]

Rep. Prog. Phys.

D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

Sov. Phys. Usp.

V. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetical permeabilities," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the device fabrication. a) A tapered fibre is manufactured from a singlemoded optical fibre; d is the taper tip diameter. b) First focused ion beam (FIB) milling.α is defined as the angle between the taper axis and the normal n to the cut. α represents the angle at which the light propagation constant along the newly formed surface matches the surface plasmon polariton (SPP) propagation constant. c) Chrome and gold coating. d) A second FIB milling generates the sub-wavelength window: h represents the distance between the cut and the coated fibre tip. E) Detail of the final device.

Fig. 2.
Fig. 2.

Dependence of the resonance angle on the taper diameter for fiber tapers coated with gold. The inset shows a detail for taper diameters between 1 and 2μm.

Fig. 3.
Fig. 3.

Samples realized by focused ion beam (FIB) milling. The bright and the dark areas represent gold coated and bare silica regions, respectively.

Fig. 4.
Fig. 4.

Schematic of the set-up used to measure the prototype transmission efficiency: a supercontinuum source is coupled through a xyz stage to a modal filter, necessary to have single moded propagation along all the range of wavelengths considered. The filter is spliced to the sample and the transmitted light is collected by an OSA using a multimodal fiber.

Fig. 5.
Fig. 5.

Spectra of the supercontinuum source with the microwire mode filter (a), and with the sample in dry (b) and humid (c) environments. Spectra (b) and (c) have been normalised with respect to (a) and are reported in red and blue in (d).

Fig. 6.
Fig. 6.

(a) Geometrical structure of an equivalent waveguide used for simulations. Light is emitted only through the white (uncovered) section. (b) Simulated transmission from the uncovered taper window because of simple geometrical considerations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ x λ 0 2 n
α = arcsin ( 1 n eff ε met ε air ε met + ε air )

Metrics