S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271, 532–542 (2007).

[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports-Review Section of Physics Letters 416, 1–128 (2005).

S. Valling, T. Fordell, and A. M. Lindberg,“Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72, 033810 (2005).

[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg,“Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254, 282–289 (2005).

[CrossRef]

A. Corana, G. Bortolan, and A. Casaleggio, “Most probable dimension value and most flat interval methods for automatic estimation of dimension from time series,” Chaos, Solitons Fractals 20, 779–790 (2004).

[CrossRef]

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242, 613–622 (2004).

[CrossRef]

K. E. Chlouverakis and M. J. Adams, “Stability maps of injection-locked laser diodes using the largest Lyapunov exponent,” Opt. Commun. 216, 405–412 (2003).

[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).

[CrossRef]

J. S. Lawrence and D. M. Kane, “Nonlinear dynamics of a laser diode with optical feedback systems subject to modulation,” IEEE J. Quantum Electron. 38, 185–192 (2002).

[CrossRef]

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B 4, 149–154 (2002).

[CrossRef]

S. Eriksson, “Dependence of the experimental stability diagram of an optically injected semiconductor laser on the laser current,” Opt. Commun. 210, 343–353 (2002).

[CrossRef]

S. Donati and C. R. Mirasso “Feature section on optical chaos and applications to cryptography,” IEEE J. Quantum Electron. 38, 1138–1204 (2002).

[CrossRef]

S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback,” IEEE J. Quantum Electron. 37, 329–336 (2001).

[CrossRef]

T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D 142, 346–382 (2000).

[CrossRef]

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).

[CrossRef]
[PubMed]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).

[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9, 765–784 (1997).

[CrossRef]

C. Liu, R. Roy, H. D. I. Abarbanel, Z. Gills, and K. Nunes, “Influence of noise on chaotic laser dynamics,” Phys. Rev. E 55, 6483–6500 (1997).

[CrossRef]

H. Kantz, “A robust method to estimate the maximal Lyapunov exponent of a time-series,” Phys. Lett. A 185, 77–87 (1994).

[CrossRef]

M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “Reconstruction expansion as a geometry-based framework for choosing proper delay times,” Physica D 73, 82–98 (1994).

[CrossRef]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64, 3539–3541 (1994).

[CrossRef]

P. E. Rapp, A. M. Albano, T. I. Schmah, and L. A. Farwell, “Filtered noise can mimic low-dimensional chaotic attractors,” Phys. Rev. E 47, 2289–2297 (1993).

[CrossRef]

M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D 65, 117–134 (1993).

[CrossRef]

T. Buzug and G. Pfister, “Comparison of algorithms calculating optimal embedding parameters for delay time coordinates,” Physica D 58, 127–137 (1992).

[CrossRef]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series -The method of surrogate data,” Physica D 58, 77–94 (1992).

[CrossRef]

A. Provenzale, L. A. Smith, R. Vio, and G. Murante, “Distinguishing between low-dimensional dynamics and randomness in measured time-series,” Physica D 58, 31–49 (1992).

[CrossRef]

M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, “State space reconstruction in the presence of noise,” Physica D 51, 52–98 (1991).

[CrossRef]

E. Hemery, L. Chusseau, and J. M. Lourtioz, “Dynamic behaviors of semiconductor lasers under strong sinusoidal current modulation: modeling and experiments at 1.3 μm,” IEEE J. Quantum Electron. 26, 633–641 (1990).

[CrossRef]

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–824 (1990).

[CrossRef]
[PubMed]

J. Theiler, “Spurious dimension from correlation algorithms applied to limited time-series data,” Phys. Rev. A 34, 2427–2432 (1986).

[CrossRef]
[PubMed]

F. T. Arecchi, W. Gadomski, and R. Meucci, “Generation of chaotic dynamics by feedback on a laser,” Phys. Rev. A 34, 1617–1620 (1986).

[CrossRef]
[PubMed]

A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Phys. Rev. A 33, 1134–1140 (1986).

[CrossRef]
[PubMed]

W. Klische and C. O. Weiss, “Instabilities and routes to chaos in a homogeneously broadened one- and two-mode ring laser,” Phys. Rev. A 31, 4049–4051 (1985).

[CrossRef]
[PubMed]

P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D 9, 189–208 (1983).

[CrossRef]

K. R. Preston, K. C. Woollard, and K. H. Cameron, “External cavity controlled single longitudinal mode laser transmitter module,” Electon. Lett. 17, 931–933 (1981).

[CrossRef]

H. L. Stover and W. H. Steier, “Locking of laser oscillators by light injection,” Appl. Phys. Lett. 8, 91–93 (1966).

[CrossRef]

E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20, 130–141 (1963).

[CrossRef]

C. Liu, R. Roy, H. D. I. Abarbanel, Z. Gills, and K. Nunes, “Influence of noise on chaotic laser dynamics,” Phys. Rev. E 55, 6483–6500 (1997).

[CrossRef]

K. E. Chlouverakis and M. J. Adams, “Stability maps of injection-locked laser diodes using the largest Lyapunov exponent,” Opt. Commun. 216, 405–412 (2003).

[CrossRef]

P. E. Rapp, A. M. Albano, T. I. Schmah, and L. A. Farwell, “Filtered noise can mimic low-dimensional chaotic attractors,” Phys. Rev. E 47, 2289–2297 (1993).

[CrossRef]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64, 3539–3541 (1994).

[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

F. T. Arecchi, W. Gadomski, and R. Meucci, “Generation of chaotic dynamics by feedback on a laser,” Phys. Rev. A 34, 1617–1620 (1986).

[CrossRef]
[PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

A. Corana, G. Bortolan, and A. Casaleggio, “Most probable dimension value and most flat interval methods for automatic estimation of dimension from time series,” Chaos, Solitons Fractals 20, 779–790 (2004).

[CrossRef]

T. Buzug and G. Pfister, “Comparison of algorithms calculating optimal embedding parameters for delay time coordinates,” Physica D 58, 127–137 (1992).

[CrossRef]

K. R. Preston, K. C. Woollard, and K. H. Cameron, “External cavity controlled single longitudinal mode laser transmitter module,” Electon. Lett. 17, 931–933 (1981).

[CrossRef]

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–824 (1990).

[CrossRef]
[PubMed]

A. Corana, G. Bortolan, and A. Casaleggio, “Most probable dimension value and most flat interval methods for automatic estimation of dimension from time series,” Chaos, Solitons Fractals 20, 779–790 (2004).

[CrossRef]

M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, “State space reconstruction in the presence of noise,” Physica D 51, 52–98 (1991).

[CrossRef]

K. E. Chlouverakis and M. J. Adams, “Stability maps of injection-locked laser diodes using the largest Lyapunov exponent,” Opt. Commun. 216, 405–412 (2003).

[CrossRef]

E. Hemery, L. Chusseau, and J. M. Lourtioz, “Dynamic behaviors of semiconductor lasers under strong sinusoidal current modulation: modeling and experiments at 1.3 μm,” IEEE J. Quantum Electron. 26, 633–641 (1990).

[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “Reconstruction expansion as a geometry-based framework for choosing proper delay times,” Physica D 73, 82–98 (1994).

[CrossRef]

M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D 65, 117–134 (1993).

[CrossRef]

A. Corana, G. Bortolan, and A. Casaleggio, “Most probable dimension value and most flat interval methods for automatic estimation of dimension from time series,” Chaos, Solitons Fractals 20, 779–790 (2004).

[CrossRef]

M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “Reconstruction expansion as a geometry-based framework for choosing proper delay times,” Physica D 73, 82–98 (1994).

[CrossRef]

M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D 65, 117–134 (1993).

[CrossRef]

S. Donati and C. R. Mirasso “Feature section on optical chaos and applications to cryptography,” IEEE J. Quantum Electron. 38, 1138–1204 (2002).

[CrossRef]

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B 4, 149–154 (2002).

[CrossRef]

S. Eriksson, “Dependence of the experimental stability diagram of an optically injected semiconductor laser on the laser current,” Opt. Commun. 210, 343–353 (2002).

[CrossRef]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series -The method of surrogate data,” Physica D 58, 77–94 (1992).

[CrossRef]

M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, “State space reconstruction in the presence of noise,” Physica D 51, 52–98 (1991).

[CrossRef]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series -The method of surrogate data,” Physica D 58, 77–94 (1992).

[CrossRef]

M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, “State space reconstruction in the presence of noise,” Physica D 51, 52–98 (1991).

[CrossRef]

P. E. Rapp, A. M. Albano, T. I. Schmah, and L. A. Farwell, “Filtered noise can mimic low-dimensional chaotic attractors,” Phys. Rev. E 47, 2289–2297 (1993).

[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271, 532–542 (2007).

[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg,“Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72, 033810 (2005).

[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg,“Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254, 282–289 (2005).

[CrossRef]

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242, 613–622 (2004).

[CrossRef]

A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Phys. Rev. A 33, 1134–1140 (1986).

[CrossRef]
[PubMed]

F. T. Arecchi, W. Gadomski, and R. Meucci, “Generation of chaotic dynamics by feedback on a laser,” Phys. Rev. A 34, 1617–1620 (1986).

[CrossRef]
[PubMed]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series -The method of surrogate data,” Physica D 58, 77–94 (1992).

[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64, 3539–3541 (1994).

[CrossRef]

M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, “State space reconstruction in the presence of noise,” Physica D 51, 52–98 (1991).

[CrossRef]

C. Liu, R. Roy, H. D. I. Abarbanel, Z. Gills, and K. Nunes, “Influence of noise on chaotic laser dynamics,” Phys. Rev. E 55, 6483–6500 (1997).

[CrossRef]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).

[CrossRef]

P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D 9, 189–208 (1983).

[CrossRef]

E. Hemery, L. Chusseau, and J. M. Lourtioz, “Dynamic behaviors of semiconductor lasers under strong sinusoidal current modulation: modeling and experiments at 1.3 μm,” IEEE J. Quantum Electron. 26, 633–641 (1990).

[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9, 765–784 (1997).

[CrossRef]

D. M. Kane, J. P. Toomey, M. W. Lee, and K. A. Shore, “Correlation dimension signature of wideband chaos synchronization of semiconductor lasers,” Opt. Lett. 31, 20–22 (2006).

[CrossRef]
[PubMed]

J. S. Lawrence and D. M. Kane, “Nonlinear dynamics of a laser diode with optical feedback systems subject to modulation,” IEEE J. Quantum Electron. 38, 185–192 (2002).

[CrossRef]

J. P. Toomey and D. M. Kane, “Analysis of chaotic semiconductor laser diodes,” in Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices(IEEE, Perth, Australia, 2006), pp. 164–167.

[CrossRef]

H. Kantz, “A robust method to estimate the maximal Lyapunov exponent of a time-series,” Phys. Lett. A 185, 77–87 (1994).

[CrossRef]

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2004).

W. Klische and C. O. Weiss, “Instabilities and routes to chaos in a homogeneously broadened one- and two-mode ring laser,” Phys. Rev. A 31, 4049–4051 (1985).

[CrossRef]
[PubMed]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64, 3539–3541 (1994).

[CrossRef]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271, 532–542 (2007).

[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports-Review Section of Physics Letters 416, 1–128 (2005).

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).

[CrossRef]

J. S. Lawrence and D. M. Kane, “Nonlinear dynamics of a laser diode with optical feedback systems subject to modulation,” IEEE J. Quantum Electron. 38, 185–192 (2002).

[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports-Review Section of Physics Letters 416, 1–128 (2005).

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).

[CrossRef]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271, 532–542 (2007).

[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg,“Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72, 033810 (2005).

[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg,“Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254, 282–289 (2005).

[CrossRef]

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242, 613–622 (2004).

[CrossRef]

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B 4, 149–154 (2002).

[CrossRef]

C. Liu, R. Roy, H. D. I. Abarbanel, Z. Gills, and K. Nunes, “Influence of noise on chaotic laser dynamics,” Phys. Rev. E 55, 6483–6500 (1997).

[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).

[CrossRef]

S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback,” IEEE J. Quantum Electron. 37, 329–336 (2001).

[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9, 765–784 (1997).

[CrossRef]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64, 3539–3541 (1994).

[CrossRef]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series -The method of surrogate data,” Physica D 58, 77–94 (1992).

[CrossRef]

E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20, 130–141 (1963).

[CrossRef]

E. Hemery, L. Chusseau, and J. M. Lourtioz, “Dynamic behaviors of semiconductor lasers under strong sinusoidal current modulation: modeling and experiments at 1.3 μm,” IEEE J. Quantum Electron. 26, 633–641 (1990).

[CrossRef]

F. T. Arecchi, W. Gadomski, and R. Meucci, “Generation of chaotic dynamics by feedback on a laser,” Phys. Rev. A 34, 1617–1620 (1986).

[CrossRef]
[PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

S. Donati and C. R. Mirasso “Feature section on optical chaos and applications to cryptography,” IEEE J. Quantum Electron. 38, 1138–1204 (2002).

[CrossRef]

A. Provenzale, L. A. Smith, R. Vio, and G. Murante, “Distinguishing between low-dimensional dynamics and randomness in measured time-series,” Physica D 58, 31–49 (1992).

[CrossRef]

C. Liu, R. Roy, H. D. I. Abarbanel, Z. Gills, and K. Nunes, “Influence of noise on chaotic laser dynamics,” Phys. Rev. E 55, 6483–6500 (1997).

[CrossRef]

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–824 (1990).

[CrossRef]
[PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

T. Buzug and G. Pfister, “Comparison of algorithms calculating optimal embedding parameters for delay time coordinates,” Physica D 58, 127–137 (1992).

[CrossRef]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).

[CrossRef]

K. R. Preston, K. C. Woollard, and K. H. Cameron, “External cavity controlled single longitudinal mode laser transmitter module,” Electon. Lett. 17, 931–933 (1981).

[CrossRef]

P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D 9, 189–208 (1983).

[CrossRef]

A. Provenzale, L. A. Smith, R. Vio, and G. Murante, “Distinguishing between low-dimensional dynamics and randomness in measured time-series,” Physica D 58, 31–49 (1992).

[CrossRef]

P. E. Rapp, A. M. Albano, T. I. Schmah, and L. A. Farwell, “Filtered noise can mimic low-dimensional chaotic attractors,” Phys. Rev. E 47, 2289–2297 (1993).

[CrossRef]

M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “Reconstruction expansion as a geometry-based framework for choosing proper delay times,” Physica D 73, 82–98 (1994).

[CrossRef]

M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D 65, 117–134 (1993).

[CrossRef]

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).

[CrossRef]
[PubMed]

C. Liu, R. Roy, H. D. I. Abarbanel, Z. Gills, and K. Nunes, “Influence of noise on chaotic laser dynamics,” Phys. Rev. E 55, 6483–6500 (1997).

[CrossRef]

P. E. Rapp, A. M. Albano, T. I. Schmah, and L. A. Farwell, “Filtered noise can mimic low-dimensional chaotic attractors,” Phys. Rev. E 47, 2289–2297 (1993).

[CrossRef]

T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D 142, 346–382 (2000).

[CrossRef]

T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D 142, 346–382 (2000).

[CrossRef]

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2004).

D. M. Kane, J. P. Toomey, M. W. Lee, and K. A. Shore, “Correlation dimension signature of wideband chaos synchronization of semiconductor lasers,” Opt. Lett. 31, 20–22 (2006).

[CrossRef]
[PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports-Review Section of Physics Letters 416, 1–128 (2005).

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9, 765–784 (1997).

[CrossRef]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64, 3539–3541 (1994).

[CrossRef]

A. Provenzale, L. A. Smith, R. Vio, and G. Murante, “Distinguishing between low-dimensional dynamics and randomness in measured time-series,” Physica D 58, 31–49 (1992).

[CrossRef]

H. L. Stover and W. H. Steier, “Locking of laser oscillators by light injection,” Appl. Phys. Lett. 8, 91–93 (1966).

[CrossRef]

H. L. Stover and W. H. Steier, “Locking of laser oscillators by light injection,” Appl. Phys. Lett. 8, 91–93 (1966).

[CrossRef]

A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Phys. Rev. A 33, 1134–1140 (1986).

[CrossRef]
[PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9, 765–784 (1997).

[CrossRef]

F. Takens, “Dynamical systems and turbulence,” in Springer Lecture Notes in Mathematics, D. A. Rand and L.-S. Young, eds. (Springer-Verlag, New York, 1980), pp. 366–381.

S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback,” IEEE J. Quantum Electron. 37, 329–336 (2001).

[CrossRef]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series -The method of surrogate data,” Physica D 58, 77–94 (1992).

[CrossRef]

J. Theiler, “Spurious dimension from correlation algorithms applied to limited time-series data,” Phys. Rev. A 34, 2427–2432 (1986).

[CrossRef]
[PubMed]

D. M. Kane, J. P. Toomey, M. W. Lee, and K. A. Shore, “Correlation dimension signature of wideband chaos synchronization of semiconductor lasers,” Opt. Lett. 31, 20–22 (2006).

[CrossRef]
[PubMed]

J. P. Toomey and D. M. Kane, “Analysis of chaotic semiconductor laser diodes,” in Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices(IEEE, Perth, Australia, 2006), pp. 164–167.

[CrossRef]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271, 532–542 (2007).

[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg,“Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72, 033810 (2005).

[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg,“Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254, 282–289 (2005).

[CrossRef]

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).

[CrossRef]
[PubMed]

A. Provenzale, L. A. Smith, R. Vio, and G. Murante, “Distinguishing between low-dimensional dynamics and randomness in measured time-series,” Physica D 58, 31–49 (1992).

[CrossRef]

W. Klische and C. O. Weiss, “Instabilities and routes to chaos in a homogeneously broadened one- and two-mode ring laser,” Phys. Rev. A 31, 4049–4051 (1985).

[CrossRef]
[PubMed]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports-Review Section of Physics Letters 416, 1–128 (2005).

K. R. Preston, K. C. Woollard, and K. H. Cameron, “External cavity controlled single longitudinal mode laser transmitter module,” Electon. Lett. 17, 931–933 (1981).

[CrossRef]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64, 3539–3541 (1994).

[CrossRef]

H. L. Stover and W. H. Steier, “Locking of laser oscillators by light injection,” Appl. Phys. Lett. 8, 91–93 (1966).

[CrossRef]

A. Corana, G. Bortolan, and A. Casaleggio, “Most probable dimension value and most flat interval methods for automatic estimation of dimension from time series,” Chaos, Solitons Fractals 20, 779–790 (2004).

[CrossRef]

K. R. Preston, K. C. Woollard, and K. H. Cameron, “External cavity controlled single longitudinal mode laser transmitter module,” Electon. Lett. 17, 931–933 (1981).

[CrossRef]

J. S. Lawrence and D. M. Kane, “Nonlinear dynamics of a laser diode with optical feedback systems subject to modulation,” IEEE J. Quantum Electron. 38, 185–192 (2002).

[CrossRef]

S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback,” IEEE J. Quantum Electron. 37, 329–336 (2001).

[CrossRef]

E. Hemery, L. Chusseau, and J. M. Lourtioz, “Dynamic behaviors of semiconductor lasers under strong sinusoidal current modulation: modeling and experiments at 1.3 μm,” IEEE J. Quantum Electron. 26, 633–641 (1990).

[CrossRef]

S. Donati and C. R. Mirasso “Feature section on optical chaos and applications to cryptography,” IEEE J. Quantum Electron. 38, 1138–1204 (2002).

[CrossRef]

E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20, 130–141 (1963).

[CrossRef]

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B 4, 149–154 (2002).

[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).

[CrossRef]
[PubMed]

S. Eriksson, “Dependence of the experimental stability diagram of an optically injected semiconductor laser on the laser current,” Opt. Commun. 210, 343–353 (2002).

[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).

[CrossRef]

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242, 613–622 (2004).

[CrossRef]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271, 532–542 (2007).

[CrossRef]

K. E. Chlouverakis and M. J. Adams, “Stability maps of injection-locked laser diodes using the largest Lyapunov exponent,” Opt. Commun. 216, 405–412 (2003).

[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg,“Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254, 282–289 (2005).

[CrossRef]

D. M. Kane, J. P. Toomey, M. W. Lee, and K. A. Shore, “Correlation dimension signature of wideband chaos synchronization of semiconductor lasers,” Opt. Lett. 31, 20–22 (2006).

[CrossRef]
[PubMed]

A. Uchida, H. Shinozuka, T. Ogawa, and F. Kannari, “Experiments on chaos synchronization in two separate microchip lasers,” Opt. Lett. 24, 890–892 (1999).

[CrossRef]

H. Kantz, “A robust method to estimate the maximal Lyapunov exponent of a time-series,” Phys. Lett. A 185, 77–87 (1994).

[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg,“Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72, 033810 (2005).

[CrossRef]

A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Phys. Rev. A 33, 1134–1140 (1986).

[CrossRef]
[PubMed]

F. T. Arecchi, W. Gadomski, and R. Meucci, “Generation of chaotic dynamics by feedback on a laser,” Phys. Rev. A 34, 1617–1620 (1986).

[CrossRef]
[PubMed]

W. Klische and C. O. Weiss, “Instabilities and routes to chaos in a homogeneously broadened one- and two-mode ring laser,” Phys. Rev. A 31, 4049–4051 (1985).

[CrossRef]
[PubMed]

J. Theiler, “Spurious dimension from correlation algorithms applied to limited time-series data,” Phys. Rev. A 34, 2427–2432 (1986).

[CrossRef]
[PubMed]

P. E. Rapp, A. M. Albano, T. I. Schmah, and L. A. Farwell, “Filtered noise can mimic low-dimensional chaotic attractors,” Phys. Rev. E 47, 2289–2297 (1993).

[CrossRef]

C. Liu, R. Roy, H. D. I. Abarbanel, Z. Gills, and K. Nunes, “Influence of noise on chaotic laser dynamics,” Phys. Rev. E 55, 6483–6500 (1997).

[CrossRef]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).

[CrossRef]

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–824 (1990).

[CrossRef]
[PubMed]

P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D 9, 189–208 (1983).

[CrossRef]

M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “Reconstruction expansion as a geometry-based framework for choosing proper delay times,” Physica D 73, 82–98 (1994).

[CrossRef]

T. Buzug and G. Pfister, “Comparison of algorithms calculating optimal embedding parameters for delay time coordinates,” Physica D 58, 127–137 (1992).

[CrossRef]

M. T. Rosenstein, J. J. Collins, and C. J. Deluca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D 65, 117–134 (1993).

[CrossRef]

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series -The method of surrogate data,” Physica D 58, 77–94 (1992).

[CrossRef]

A. Provenzale, L. A. Smith, R. Vio, and G. Murante, “Distinguishing between low-dimensional dynamics and randomness in measured time-series,” Physica D 58, 31–49 (1992).

[CrossRef]

T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D 142, 346–382 (2000).

[CrossRef]

M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, “State space reconstruction in the presence of noise,” Physica D 51, 52–98 (1991).

[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports-Review Section of Physics Letters 416, 1–128 (2005).

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9, 765–784 (1997).

[CrossRef]

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).

[CrossRef]
[PubMed]

D. M. Kane and K. A. Shore, eds. Unlocking Dynamical Diversity: Feedback Effects on Semiconductor Lasers (Wiley, 2005).

[CrossRef]

J. P. Toomey and D. M. Kane, “Analysis of chaotic semiconductor laser diodes,” in Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices(IEEE, Perth, Australia, 2006), pp. 164–167.

[CrossRef]

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2004).

F. Takens, “Dynamical systems and turbulence,” in Springer Lecture Notes in Mathematics, D. A. Rand and L.-S. Young, eds. (Springer-Verlag, New York, 1980), pp. 366–381.