Abstract

This article describes a new approach to cancel the pulse broadening in a cascaded slow-light system. With the help of a simple experimental setup a method with significant potential to achieve a high pulse delay at almost zero pulse broadening is shown. Since the pulse reshaping is done inside a single delaying segment, this method can be used in connection with any other Brillouin based slow-light system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, M. G. Herráez, and L. Thevenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  2. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94,153902 (2005).
    [CrossRef] [PubMed]
  3. M. G. Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14,1395-1400 (2006).
    [CrossRef]
  4. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008).
    [CrossRef] [PubMed]
  5. T. Schneider, R. Henker, K. Lauterbach, and M. Junker, "Distortion reduction in Slow Light systems based on stimulated Brillouin scattering," Opt. Express 16, 8280-8285 (2008).
    [CrossRef] [PubMed]
  6. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, "Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity," Opt. Lett. 32, 1986-1988 (2007).
    [CrossRef] [PubMed]
  7. S. Wang, L. Ren, Y. Liu, and Y. Tomita, "Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams," Opt. Express 16, 8067-8076 (2008).
    [CrossRef] [PubMed]
  8. T. Schneider, A. Wiatrek, and R. Henker, "Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays," Opt. Express 16, 15617-15622 (2008).
    [CrossRef] [PubMed]
  9. A. Wiatrek, R. Henker, S. Preußler, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, "Zero-broadening measurement in Brillouin based slow-light delays," Opt. Express 17, 797-802 (2009).
    [CrossRef] [PubMed]
  10. V. I. Kovalev and R. G. Harrison, "Threshold for stimulated Brillouin scattering in optical fiber," Opt. Express 15, 17625-17630 (2007).
    [CrossRef] [PubMed]
  11. T. Schneider, "Time delay limits of stimulated-Brillouin-scattering-based slow light systems," Opt. Lett. 33, 1398-1400 (2008).
    [CrossRef] [PubMed]

2009 (1)

2008 (5)

2007 (2)

2006 (1)

2005 (2)

K. Y. Song, M. G. Herráez, and L. Thevenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94,153902 (2005).
[CrossRef] [PubMed]

Ammann, M. J.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94,153902 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, "Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity," Opt. Lett. 32, 1986-1988 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94,153902 (2005).
[CrossRef] [PubMed]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94,153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Harrison, R. G.

Henker, R.

Herráez, M. G.

Junker, M.

Kovalev, V. I.

Lauterbach, K.

Liu, Y.

Neifeld, M. A.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94,153902 (2005).
[CrossRef] [PubMed]

Pant, R.

Preußler, S.

Ren, L.

Schneider, T.

Schwarzbacher, A. T.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94,153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94,153902 (2005).
[CrossRef] [PubMed]

Shi, Z.

Song, K. Y.

Stenner, M. D.

Thevenaz, L.

Thévenaz, L.

Tomita, Y.

Wang, S.

Wiatrek, A.

Zhu, Z.

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, "Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity," Opt. Lett. 32, 1986-1988 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94,153902 (2005).
[CrossRef] [PubMed]

Opt. Express (8)

M. G. Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14,1395-1400 (2006).
[CrossRef]

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K. Lauterbach, and M. Junker, "Distortion reduction in Slow Light systems based on stimulated Brillouin scattering," Opt. Express 16, 8280-8285 (2008).
[CrossRef] [PubMed]

S. Wang, L. Ren, Y. Liu, and Y. Tomita, "Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams," Opt. Express 16, 8067-8076 (2008).
[CrossRef] [PubMed]

T. Schneider, A. Wiatrek, and R. Henker, "Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays," Opt. Express 16, 15617-15622 (2008).
[CrossRef] [PubMed]

A. Wiatrek, R. Henker, S. Preußler, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, "Zero-broadening measurement in Brillouin based slow-light delays," Opt. Express 17, 797-802 (2009).
[CrossRef] [PubMed]

V. I. Kovalev and R. G. Harrison, "Threshold for stimulated Brillouin scattering in optical fiber," Opt. Express 15, 17625-17630 (2007).
[CrossRef] [PubMed]

K. Y. Song, M. G. Herráez, and L. Thevenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94,153902 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. MZM: Mach-Zehnder modulator, SSMF: standard single mode fiber, C: circulator, EDFA: Erbium doped fiber amplifier, VOA: variable optical attenuator, PD: photo diode, OSA: optical spectrum analyzer, Osci: oscilloscope.

Fig. 2.
Fig. 2.

Normalized gain (a) and time delay (b) of the first stage, generated by one single pump wave (solid lines; g 0 = γ 0 = 1). The dashed lines show the normalized input and the dotted the normalized output pulse spectra (W = 1).

Fig. 3.
Fig. 3.

Normalized gain (a) and time delay (b) of the second stage, generated by two pump waves (solid lines; g 0 =γ 0 =1, m = 2, k = 1, d = 0.9). The dotted lines show the normalized output pulse spectra of the first stage (W = 1).

Fig. 4.
Fig. 4.

Normalized Gain for the two stage system (g 0 = γ 0 = 1, m = 2, k = 1, d = 0.95, D = 1).

Fig. 5.
Fig. 5.

Output pulses at every stage in comparison to the reference pulse for a FWHM gain bandwidth of the first stage of 550 MHz and an additional attenuation between both segments of 0 dB.

Fig. 6.
Fig. 6.

Fractional time delay (a) and fractional pulse width (b) as a function of the attenuation between the slow-light stages. The given Parameters at the measurement graphs are the fractional output values and the gain bandwidth of the first stage.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G I = g 0 ( 1 Ω 2 + 1 ) .
Δ t I = g 0 γ 0 1 Ω 2 ( 1 + Ω 2 ) 2 .
Out I = In × exp ( G I ) = In × exp ( g 0 1 Ω 2 + 1 ) .
G II = g 0 ( m k 2 ( Ω + d ) 2 + k 2 + m k 2 ( Ω d ) 2 + k 2 ) .
Δ t II = g 0 γ 0 ( mk [ k 2 ( Ω + d ) 2 ] [ ( Ω + d ) 2 + k 2 ] 2 + mk [ k 2 ( Ω d ) 2 ] [ ( Ω d ) 2 + k 2 ] 2 ) .
Δ t II ( Ω = 0 ) = g 0 γ 0 2 m k k 2 d 2 ( k 2 + d 2 ) 2 .
Out II = Out I × exp ( G II D )
= In × exp [ g 0 ( 1 Ω 2 + 1 + m k 2 ( Ω + d ) 2 + k 2 + m k 2 ( Ω d ) 2 + k 2 ) D ] ,

Metrics