## Abstract

This article describes a new approach to cancel the pulse broadening in a cascaded slow-light system. With the help of a simple experimental setup a method with significant potential to achieve a high pulse delay at almost zero pulse broadening is shown. Since the pulse reshaping is done inside a single delaying segment, this method can be used in connection with any other Brillouin based slow-light system.

© 2009 Optical Society of America

Full Article |

PDF Article
### Equations (8)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${G}_{I}={g}_{0}\left(\frac{1}{{\Omega}^{2}+1}\right).$$
(2)
$$\Delta {t}_{I}=\frac{{g}_{0}}{{\gamma}_{0}}\frac{1-{\Omega}^{2}}{{\left(1+{\Omega}^{2}\right)}^{2}}.$$
(3)
$${\mathrm{Out}}_{I}=\mathrm{In}\times \mathrm{exp}\left({G}_{I}\right)=\mathrm{In}\times \mathrm{exp}\left({g}_{0}\frac{1}{{\Omega}^{2}+1}\right).$$
(4)
$${G}_{\mathrm{II}}={g}_{0}\left(\frac{m{k}^{2}}{{\left(\Omega +d\right)}^{2}+{k}^{2}}+\frac{m{k}^{2}}{{\left(\Omega -d\right)}^{2}+{k}^{2}}\right).$$
(5)
$$\Delta {t}_{\mathrm{II}}=\frac{{g}_{0}}{{\gamma}_{0}}\left(\frac{\mathrm{mk}\left[{k}^{2}-{\left(\Omega +d\right)}^{2}\right]}{{\left[{\left(\Omega +d\right)}^{2}+{k}^{2}\right]}^{2}}+\frac{\mathrm{mk}\left[{k}^{2}-{\left(\Omega -d\right)}^{2}\right]}{{\left[{\left(\Omega -d\right)}^{2}+{k}^{2}\right]}^{2}}\right).$$
(6)
$$\Delta {t}_{\mathrm{II}}\left(\Omega =0\right)=\frac{{g}_{0}}{{\gamma}_{0}}2mk\frac{{k}^{2}-{d}^{2}}{{\left({k}^{2}+{d}^{2}\right)}^{2}}.$$
(7)
$${\mathrm{Out}}_{\mathrm{II}}={\mathrm{Out}}_{I}\times \mathrm{exp}\left({G}_{\mathrm{II}}-D\right)$$
(8)
$$=\mathrm{In}\times \mathrm{exp}\left[{g}_{0}\left(\frac{1}{{\Omega}^{2}+1}+\frac{m{k}^{2}}{{\left(\Omega +d\right)}^{2}+{k}^{2}}+\frac{m{k}^{2}}{{\left(\Omega -d\right)}^{2}+{k}^{2}}\right)-D\right],$$