Abstract

We have developed a three dimensional (3D) multispectral fluorescence optical tomography small animal imaging system with an innovative geometry using a truncated conical mirror, allowing simultaneous viewing of the entire surface of the animal by an EMCCD camera. A conical mirror collects photons approximately three times more efficiently than a flat mirror. An x-y mirror scanning system makes it possible to scan a collimated excitation laser beam to any location on the mouse surface. A pattern of structured light incident on the small animal surface is used to extract the surface geometry for reconstruction. A finite element based algorithm is applied to model photon propagation in the turbid media and a preconditioned conjugate gradient (PCG) method is used to solve the large linear system matrix. The reconstruction algorithm and the system feasibility are evaluated by phantom experiments. These experiments show that multispectral measurements improve the spatial resolution of reconstructed images. Finally, an in vivo imaging study of a xenograft tumor in a mouse shows good correlation of the reconstructed image with the location of the fluorescence probe as determined by subsequent optical imaging of cryosections of the mouse.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef]
  2. M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Dis. Markers 19, 107-121 (2003).
  3. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
    [CrossRef] [PubMed]
  4. G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
    [CrossRef] [PubMed]
  5. E. Shives, Y. Xu, and H. B. Jiang, "Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye," Opt. Express 10, 1557-1562 (2002).
    [PubMed]
  6. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
    [CrossRef] [PubMed]
  7. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004).
    [CrossRef]
  8. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections," Opt. Lett. 32, 382-384 (2007).
    [CrossRef] [PubMed]
  9. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005).
    [CrossRef] [PubMed]
  10. C. D'Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in a turbid medium," Phys. Med. Biol. 50, 2313-2327 (2005).
    [CrossRef] [PubMed]
  11. G. Wang, H. Shen, K. Duraiaj, X. Qian, and W. X. Cong, "The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral Data," Int. J. Biomed. Imaging 2006, 58601 (2006).
  12. H. Shen, A. Cong, X. Qian, W. Cong, and G. Wang, "A Cone-shaped Mirror-based 360 View Bioluminescence Tomography System," Joint Molecular Imaging Conference Abstract Book, (2007) Pg. 83. .
  13. A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
    [CrossRef] [PubMed]
  14. T. K. Dey, and S. Goswami, "Tight Cocone: A Water-tight Surface Reconstructor," J. Comp. Inform. Sci. Eng. 3, 302-307 (2003).
    [CrossRef]
  15. F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation," J. Comput. Phys. 187, 597-619 (2003).
    [CrossRef]
  16. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, "Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography," Phys. Med. Biol. 53, 3921-3942 (2008).
    [CrossRef] [PubMed]
  17. N. Iftimia, and H. B. Jiang, "Quantitative optical image reconstruction of turbid media by use of direct-current measurements," Appl. Opt. 39, 5256-5261 (2000).
    [CrossRef]
  18. Fluorescence SpectraViewer, www.invitrogen.com/site/us/en/home/support/Research-Tools/Fluorescence-SpectraViewer.html.
  19. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
    [CrossRef] [PubMed]

2008 (2)

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, "Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography," Phys. Med. Biol. 53, 3921-3942 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
[CrossRef] [PubMed]

G. Wang, H. Shen, K. Duraiaj, X. Qian, and W. X. Cong, "The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral Data," Int. J. Biomed. Imaging 2006, 58601 (2006).

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

2005 (5)

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005).
[CrossRef] [PubMed]

C. D'Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in a turbid medium," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (3)

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Dis. Markers 19, 107-121 (2003).

T. K. Dey, and S. Goswami, "Tight Cocone: A Water-tight Surface Reconstructor," J. Comp. Inform. Sci. Eng. 3, 302-307 (2003).
[CrossRef]

F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation," J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

2002 (1)

2000 (1)

Achilefu, S.

Ahn, S.

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, "Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography," Phys. Med. Biol. 53, 3921-3942 (2008).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Bading, J. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Bloch, S. R.

Bouman, C. A.

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, "Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography," Phys. Med. Biol. 53, 3921-3942 (2008).
[CrossRef] [PubMed]

Chatziioannou, A. F.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Chaudhari, A. J.

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, "Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography," Phys. Med. Biol. 53, 3921-3942 (2008).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Cherry, S. R.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Comelli, D.

C. D'Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in a turbid medium," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef] [PubMed]

Cong, W. X.

G. Wang, H. Shen, K. Duraiaj, X. Qian, and W. X. Cong, "The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral Data," Int. J. Biomed. Imaging 2006, 58601 (2006).

Conti, P. S.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Cubeddu, R.

C. D'Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in a turbid medium," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef] [PubMed]

Culver, J. P.

D'Andrea, C.

C. D'Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in a turbid medium," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef] [PubMed]

Darvas, F.

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, "Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography," Phys. Med. Biol. 53, 3921-3942 (2008).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Davis, S. C.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

De Grand, A. M.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

Dehghani, H.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

Deliolanis, N.

Dey, T. K.

T. K. Dey, and S. Goswami, "Tight Cocone: A Water-tight Surface Reconstructor," J. Comp. Inform. Sci. Eng. 3, 302-307 (2003).
[CrossRef]

Duraiaj, K.

G. Wang, H. Shen, K. Duraiaj, X. Qian, and W. X. Cong, "The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral Data," Int. J. Biomed. Imaging 2006, 58601 (2006).

Eppstein, M. J.

F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation," J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

Fedele, F.

F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation," J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

Frangioni, J. V.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

Gibbs-Strauss, S. L.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

Gogbashian, A.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

Goswami, S.

T. K. Dey, and S. Goswami, "Tight Cocone: A Water-tight Surface Reconstructor," J. Comp. Inform. Sci. Eng. 3, 302-307 (2003).
[CrossRef]

Graves, E. E.

Gurfinkel, M.

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Dis. Markers 19, 107-121 (2003).

Hyde, D.

Iftimia, N.

Jiang, H. B.

Jiang, S. S.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

Ke, S.

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Dis. Markers 19, 107-121 (2003).

Laible, J. P.

F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation," J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

Lasser, T.

Laurence, R. G.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

Leahy, R. M.

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, "Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography," Phys. Med. Biol. 53, 3921-3942 (2008).
[CrossRef] [PubMed]

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Lee, D. S.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

Leussler, C.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

Li, C.

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Dis. Markers 19, 107-121 (2003).

Lomnes, S. J.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

Mazurkewitz, P.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

Mitchell, G.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
[CrossRef] [PubMed]

Moats, R. A.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Morgan, T. G.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

Ntziachristos, V.

Ohnishi, S.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

Patwardhan, S. V.

Paulsen, K. D.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

Pichler, B. J.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
[CrossRef] [PubMed]

Pietrzykowski, M.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

Pogue, B. W.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

Qian, X.

G. Wang, H. Shen, K. Duraiaj, X. Qian, and W. X. Cong, "The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral Data," Int. J. Biomed. Imaging 2006, 58601 (2006).

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Ripoll, J.

Sevick-Muraca, E. M.

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Dis. Markers 19, 107-121 (2003).

Shen, H.

G. Wang, H. Shen, K. Duraiaj, X. Qian, and W. X. Cong, "The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral Data," Int. J. Biomed. Imaging 2006, 58601 (2006).

Shives, E.

Smith, D. J.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Soubret, A.

Spinelli, L.

C. D'Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in a turbid medium," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef] [PubMed]

Springett, R.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

Tuttle, S. B.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

Valentini, G.

C. D'Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in a turbid medium," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef] [PubMed]

Vecchi, S.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
[CrossRef] [PubMed]

Wang, G.

G. Wang, H. Shen, K. Duraiaj, X. Qian, and W. X. Cong, "The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral Data," Int. J. Biomed. Imaging 2006, 58601 (2006).

Wang, L. H. V.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

Weisser, U.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

Wen, X. X.

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Dis. Markers 19, 107-121 (2003).

Xu, Y.

Zavattini, G.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Dis. Markers (1)

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Dis. Markers 19, 107-121 (2003).

Int. J. Biomed. Imaging (1)

G. Wang, H. Shen, K. Duraiaj, X. Qian, and W. X. Cong, "The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral Data," Int. J. Biomed. Imaging 2006, 58601 (2006).

J. Biomed. Opt. (1)

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006).
[CrossRef] [PubMed]

J. Comp. Inform. Sci. Eng. (1)

T. K. Dey, and S. Goswami, "Tight Cocone: A Water-tight Surface Reconstructor," J. Comp. Inform. Sci. Eng. 3, 302-307 (2003).
[CrossRef]

J. Comput. Phys. (1)

F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation," J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (5)

C. D'Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in a turbid medium," Phys. Med. Biol. 50, 2313-2327 (2005).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006).
[CrossRef] [PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, "Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography," Phys. Med. Biol. 53, 3921-3942 (2008).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008).
[CrossRef] [PubMed]

Other (2)

H. Shen, A. Cong, X. Qian, W. Cong, and G. Wang, "A Cone-shaped Mirror-based 360 View Bioluminescence Tomography System," Joint Molecular Imaging Conference Abstract Book, (2007) Pg. 83. .

Fluorescence SpectraViewer, www.invitrogen.com/site/us/en/home/support/Research-Tools/Fluorescence-SpectraViewer.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Photograph and schematic of the 3-D fluorescence optical tomography system based on a conical mirror for efficient collection of light from the entire mouse.

Fig. 2.
Fig. 2.

(a). A cube with known surface pattern; (b) the cube placed inside the conical mirror on a stage and imaged by the EMCCD camera; (c) the image of the cube after mapping back from the EMCCD image coordinate space to the object space.

Fig. 3.
Fig. 3.

Measurement comparison between flat and conical mirrors. (a) A flat mirror was inserted inside the conical mirror; fluorescence emission photon density measurements at a wavelength of 700nm with flat mirror in place (b) and with conical mirror only (c). Note that the brightness and contrast of Figs. b and c have been adjusted to highlight the measurement region.

Fig. 4.
Fig. 4.

Principle of surface geometry extraction from a laser line projection on an object in a conical mirror.

Fig. 5.
Fig. 5.

(a) A rectangular object with known size and (b) its extracted geometry.

Fig. 6.
Fig. 6.

(a) photograph of the cubic phantom taken by the EMCCD camera when the phantom was placed in the conical mirror; (b) 3D mesh for cubic phantom; (c) photograph of the mouse taken by EMCCD camera when the mouse was placed in the conical mirror; (d) extracted surface plots of the mouse, where different color points were obtained from different line pattern lasers illuminating different surfaces; (e) final 3D mesh of the mouse surface geometry.

Fig. 7.
Fig. 7.

(a) The excitation (dotted line) and emission (solid line) spectra of DiD dye from Invitrogen SpectraViewer, where horizontal axis indicates the wavelength with unit nm. (b) The normalized emission spectra of DiD dye solution (blue) and deoxyhemoglobin (red) measured with the imaging system and 650 nm excitation.

Fig. 8.
Fig. 8.

(a) Schematic of the excitation positions (blue dots) and the fluorescence measurement surfaces (left, right, top and bottom). (b) The fluorescence measurement picture taken by EMCCD for an illumination position. (c) The true illumination positions of laser beam on the front surface.

Fig. 9.
Fig. 9.

Definition of coordinate systems for phantom experiment. (a) The conical mirror coordinate system (X, Y, Z) and the local coordinate system of cubic phantom (XL, YL, ZL). (b) The local coordinate system viewed in the CCD measurement picture. (c) To view the reconstructed image in detail, the sections at different ZL are shown. (d) The coordinates of each plotted section.

Fig. 10.
Fig. 10.

(a). True positions of the target in the cubic background. Reconstructed images with measurements at single wavelength of 720 nm (b), 740 nm (c), 760 nm (d), 780 nm (e) and 840 nm (f). (g) Reconstructed image with measurements at three wavelengths of 720 nm, 740 nm and 760 nm. (h) Reconstructed image with measurements at three wavelengths of 720 nm, 780 nm and 840 nm. Color bar indicates the concentration of fluorescence dye in arbitrary units.

Fig. 11.
Fig. 11.

Profile plots cross the target centered at z=16 mm, y=23 mm (a) and at z=16 mm, x=22 mm (b). One wavelength was acquired at 720 nm and three wavelengths was acquired at 720, 780 and 840 nm.

Fig. 12.
Fig. 12.

Surface plot of the mouse geometry (blue dots) and the laser illumination positions (red dots). The measurement points cover the whole body surface for each illumination position.

Fig. 13.
Fig. 13.

Reconstructed 3D fluorescence optical image of the mouse 24 hours after 2DG injection. (a) Coronal section; (b) sagittal section; transverse section at A cross the tumor and bladder (c), at B across the kidney (e) and at C across the liver (g); fluorescence image of mouse cryosection corresponding to section A (d), section B (f) and section C (g). MRO indicates “male reproductive organ”. The color bar indicates the reconstructed fluorescence dye concentration at arbitrary unit.

Tables (1)

Tables Icon

Table 1. The phantom optical properties at each wavelength

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x C = z C H cos ( π 2 γ ) ( H x B ) + x B ; y C = z C tan ( π 2 γ ) ; z C = ( x B x A ) tan ( θ ) 1 H x B H cos ( π 2 γ ) tan ( θ )
[ A ] = [ [ A 1 ] × C 1 [ A n em ] × C n em ]
[ A i ] = [ [ Ψ 1 Ψ n d ] Φ 1 [ Ψ 1 Ψ n d ] Φ n s ] ,
( D ( λ ex ) Φ n s ) + μ a ( λ ex ) Φ n s = S k
n ( D ( λ ex ) Φ n s ) + b ex Φ n s = 0
( D ( λ em ) Ψ n d ) + μ a ( λ em ) Ψ n d = j
n ( D ( λ em ) Ψ n d ) + b em Ψ n d = 0 .

Metrics