Abstract

In this paper, the performance improvement benefiting from the combination of local feature detectors for image matching and registration is evaluated. Possible combinations of five types of representative interest point detectors and region detectors are integrated into the testing framework. The performance is compared using the number of correspondences and the repeatability rate, as well as an original evaluation criterion named the Reconstruction Similarity (RS), which reflects not only the number of matches, but also the degree of matching error. It is observed that the combination of DoG extremum and MSCR outperforms any single detectors and other detector combinations in most cases. Furthermore, MDSS, a hybrid algorithm for accurate image matching, is proposed. Compared with standard SIFT and GLOH, its average RS rate exceeds more than 3.56%, and takes up even less computational time.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point detectors,” Int. J. Comput. Vis. 60(1), 63–86 (2004).
    [CrossRef]
  2. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
    [CrossRef]
  3. K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005).
    [CrossRef] [PubMed]
  4. S. A. J. Winder, and M. Brown, “Learning local image descriptors,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Minneapolis, United States, 2007), pp. 17–24.
  5. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
    [CrossRef]
  6. J. Matas, O. Chuma, M. Urbana, and T. Pajdla, “Wide-baseline stereo from maximally stable extremal regions,” Image Vis. Comput. 22(10), 761–767 (2004).
    [CrossRef]
  7. M. Donoser, and H. Bischof, “Efficient maximally stable extremal region (MSER) tracking,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (New York, United States, 2006), pp. 553–560.
  8. P. E. Forssén, “Maximally stable colour regions for recognition and matching,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Minneapolis, United States, 2007), pp. 1220–1227.
  9. L. Trujillo, G. Olague, P. Legrand, and E. Lutton, “Regularity based descriptor computed from local image oscillations,” Opt. Express 15(10), 6140–6145 (2007).
    [CrossRef] [PubMed]
  10. T. Lindeberg, “Feature detection with automatic scale selection,” Int. J. Comput. Vis. 30(2), 79–116 (1998).
    [CrossRef]
  11. T. Tuytelaars and L. Van Gool, “Matching widely separated views based on affine invariant regions,” Int. J. Comput. Vis. 59(1), 61–85 (2004).
    [CrossRef]
  12. T. Kadir, A. Zisserman, and M. Brady, “An affine invariant salient region detector,” In Proceedings of the European Conference on Computer Vision (Prague, Czech Republic, 2004), pp. 345–457.
  13. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” Comput. Graph. 26(2), 65–70 (1992).
    [CrossRef]
  14. J. S. Beis, and D. G. Lowe, “Shape indexing using approximate nearest-neighbour search in high-dimensional spaces,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (San Juan, Puerto Rico, 1997), pp. 1000–1006.
  15. Visual Geometry Group, “Affine covariant regions datasets,” http://www.robots.ox.ac.uk/~vgg/data/ .
  16. A. Bowyer, “Computing Dirichlet tessellations,” Comput. J. 24(2), 162–166 (1981).
    [CrossRef]
  17. H. Øyvind, and D. Morten, “Triangulations and applications,” in Mathematics and Visualization, G. Farin, H. C. Hege, D. Hoffman, C. R. Johnson, K. Polthier, and M. Rumpf, eds. (Springer, Berlin, 2006).
  18. J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, “Two-dimensional PCA: a new approach to appearance-based face representation and recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004).
    [CrossRef] [PubMed]
  19. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
    [CrossRef] [PubMed]
  20. J. J. Corso, and G. D. Hager, “Coherent regions for concise and stable image description,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (San Diego, United States, 2005), pp. 184–190.
  21. V. Lepetit and P. Fua, “Keypoint recognition using randomized trees,” IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006).
    [CrossRef] [PubMed]
  22. V. Lepetit, and P. Fua, “Towards recognizing feature points using classification trees,” in Technical Report IC/2004/74. (EPFL, 2004).
  23. E. Rosten, and T. Drummond, “Fusing points and lines for high performance tracking,” in Proceedings of the IEEE International Conference on Computer Vision (Beijing, China, 2005), pp. 1508–1515.
  24. E. Rosten, and T. Drummond, “Machine learning for high-speed corner detection” in Proceedings of the European Conference on Computer Vision (Graz, Austria, 2006), pp. 430–443.
  25. H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: speeded up robust features,” in Proceedings of the European Conference on Computer Vision (Graz, Austria, 2006), pp. 404–417.
  26. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
    [CrossRef]
  27. T. Liu, A. W. Moore, A. Gray, and K. Yang, “An investigation of practical approximate nearest neighbor algorithms,” in Advances in Neural Information Processing Systems, L. K. Saul, Y. Weiss, and L. Bottou, eds. (MIT Press, Cambridge, 2005).
    [PubMed]
  28. Z. Li, A. Y. C. Nee, S. K. Ong, and W. Gong, “Tampered image detection using image matching,” in Proceedings of the IEEE Computer Society Conference on Computer Graphics, Imaging and Visualization, (Penang, Malaysia, 2008), pp. 174–179.

2008 (1)

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

2007 (1)

2006 (1)

V. Lepetit and P. Fua, “Keypoint recognition using randomized trees,” IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006).
[CrossRef] [PubMed]

2005 (2)

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
[CrossRef]

K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005).
[CrossRef] [PubMed]

2004 (6)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

J. Matas, O. Chuma, M. Urbana, and T. Pajdla, “Wide-baseline stereo from maximally stable extremal regions,” Image Vis. Comput. 22(10), 761–767 (2004).
[CrossRef]

K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point detectors,” Int. J. Comput. Vis. 60(1), 63–86 (2004).
[CrossRef]

T. Tuytelaars and L. Van Gool, “Matching widely separated views based on affine invariant regions,” Int. J. Comput. Vis. 59(1), 61–85 (2004).
[CrossRef]

J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, “Two-dimensional PCA: a new approach to appearance-based face representation and recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004).
[CrossRef] [PubMed]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[CrossRef] [PubMed]

1998 (1)

T. Lindeberg, “Feature detection with automatic scale selection,” Int. J. Comput. Vis. 30(2), 79–116 (1998).
[CrossRef]

1992 (1)

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” Comput. Graph. 26(2), 65–70 (1992).
[CrossRef]

1981 (1)

A. Bowyer, “Computing Dirichlet tessellations,” Comput. J. 24(2), 162–166 (1981).
[CrossRef]

Bay, H.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[CrossRef] [PubMed]

Bowyer, A.

A. Bowyer, “Computing Dirichlet tessellations,” Comput. J. 24(2), 162–166 (1981).
[CrossRef]

Chuma, O.

J. Matas, O. Chuma, M. Urbana, and T. Pajdla, “Wide-baseline stereo from maximally stable extremal regions,” Image Vis. Comput. 22(10), 761–767 (2004).
[CrossRef]

Ess, A.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

Frangi, A. F.

J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, “Two-dimensional PCA: a new approach to appearance-based face representation and recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004).
[CrossRef] [PubMed]

Fua, P.

V. Lepetit and P. Fua, “Keypoint recognition using randomized trees,” IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006).
[CrossRef] [PubMed]

Kadir, T.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
[CrossRef]

Legrand, P.

Lepetit, V.

V. Lepetit and P. Fua, “Keypoint recognition using randomized trees,” IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006).
[CrossRef] [PubMed]

Lindeberg, T.

T. Lindeberg, “Feature detection with automatic scale selection,” Int. J. Comput. Vis. 30(2), 79–116 (1998).
[CrossRef]

Lorensen, W. E.

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” Comput. Graph. 26(2), 65–70 (1992).
[CrossRef]

Lowe, D. G.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

Lutton, E.

Matas, J.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
[CrossRef]

J. Matas, O. Chuma, M. Urbana, and T. Pajdla, “Wide-baseline stereo from maximally stable extremal regions,” Image Vis. Comput. 22(10), 761–767 (2004).
[CrossRef]

Mikolajczyk, K.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
[CrossRef]

K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005).
[CrossRef] [PubMed]

K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point detectors,” Int. J. Comput. Vis. 60(1), 63–86 (2004).
[CrossRef]

Olague, G.

Pajdla, T.

J. Matas, O. Chuma, M. Urbana, and T. Pajdla, “Wide-baseline stereo from maximally stable extremal regions,” Image Vis. Comput. 22(10), 761–767 (2004).
[CrossRef]

Schaffalitzky, F.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
[CrossRef]

Schmid, C.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
[CrossRef]

K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005).
[CrossRef] [PubMed]

K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point detectors,” Int. J. Comput. Vis. 60(1), 63–86 (2004).
[CrossRef]

Schroeder, W. J.

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” Comput. Graph. 26(2), 65–70 (1992).
[CrossRef]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[CrossRef] [PubMed]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[CrossRef] [PubMed]

Trujillo, L.

Tuytelaars, T.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
[CrossRef]

T. Tuytelaars and L. Van Gool, “Matching widely separated views based on affine invariant regions,” Int. J. Comput. Vis. 59(1), 61–85 (2004).
[CrossRef]

Urbana, M.

J. Matas, O. Chuma, M. Urbana, and T. Pajdla, “Wide-baseline stereo from maximally stable extremal regions,” Image Vis. Comput. 22(10), 761–767 (2004).
[CrossRef]

Van Gool, L.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

T. Tuytelaars and L. Van Gool, “Matching widely separated views based on affine invariant regions,” Int. J. Comput. Vis. 59(1), 61–85 (2004).
[CrossRef]

Vangool, L.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
[CrossRef]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[CrossRef] [PubMed]

Yang, J.

J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, “Two-dimensional PCA: a new approach to appearance-based face representation and recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004).
[CrossRef] [PubMed]

Yang, J. Y.

J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, “Two-dimensional PCA: a new approach to appearance-based face representation and recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004).
[CrossRef] [PubMed]

Zarge, J. A.

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” Comput. Graph. 26(2), 65–70 (1992).
[CrossRef]

Zhang, D.

J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, “Two-dimensional PCA: a new approach to appearance-based face representation and recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004).
[CrossRef] [PubMed]

Zisserman, A.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
[CrossRef]

Comput. Graph. (1)

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” Comput. Graph. 26(2), 65–70 (1992).
[CrossRef]

Comput. J. (1)

A. Bowyer, “Computing Dirichlet tessellations,” Comput. J. 24(2), 162–166 (1981).
[CrossRef]

Comput. Vis. Image Underst. (1)

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[CrossRef]

IEEE Trans. Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (3)

V. Lepetit and P. Fua, “Keypoint recognition using randomized trees,” IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006).
[CrossRef] [PubMed]

K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005).
[CrossRef] [PubMed]

J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, “Two-dimensional PCA: a new approach to appearance-based face representation and recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004).
[CrossRef] [PubMed]

Image Vis. Comput. (1)

J. Matas, O. Chuma, M. Urbana, and T. Pajdla, “Wide-baseline stereo from maximally stable extremal regions,” Image Vis. Comput. 22(10), 761–767 (2004).
[CrossRef]

Int. J. Comput. Vis. (5)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point detectors,” Int. J. Comput. Vis. 60(1), 63–86 (2004).
[CrossRef]

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Vangool, “Comparison of affine region detectors,” Int. J. Comput. Vis. 65(1-2), 43–72 (2005).
[CrossRef]

T. Lindeberg, “Feature detection with automatic scale selection,” Int. J. Comput. Vis. 30(2), 79–116 (1998).
[CrossRef]

T. Tuytelaars and L. Van Gool, “Matching widely separated views based on affine invariant regions,” Int. J. Comput. Vis. 59(1), 61–85 (2004).
[CrossRef]

Opt. Express (1)

Other (14)

M. Donoser, and H. Bischof, “Efficient maximally stable extremal region (MSER) tracking,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (New York, United States, 2006), pp. 553–560.

P. E. Forssén, “Maximally stable colour regions for recognition and matching,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Minneapolis, United States, 2007), pp. 1220–1227.

S. A. J. Winder, and M. Brown, “Learning local image descriptors,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Minneapolis, United States, 2007), pp. 17–24.

T. Kadir, A. Zisserman, and M. Brady, “An affine invariant salient region detector,” In Proceedings of the European Conference on Computer Vision (Prague, Czech Republic, 2004), pp. 345–457.

J. S. Beis, and D. G. Lowe, “Shape indexing using approximate nearest-neighbour search in high-dimensional spaces,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (San Juan, Puerto Rico, 1997), pp. 1000–1006.

Visual Geometry Group, “Affine covariant regions datasets,” http://www.robots.ox.ac.uk/~vgg/data/ .

J. J. Corso, and G. D. Hager, “Coherent regions for concise and stable image description,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (San Diego, United States, 2005), pp. 184–190.

H. Øyvind, and D. Morten, “Triangulations and applications,” in Mathematics and Visualization, G. Farin, H. C. Hege, D. Hoffman, C. R. Johnson, K. Polthier, and M. Rumpf, eds. (Springer, Berlin, 2006).

T. Liu, A. W. Moore, A. Gray, and K. Yang, “An investigation of practical approximate nearest neighbor algorithms,” in Advances in Neural Information Processing Systems, L. K. Saul, Y. Weiss, and L. Bottou, eds. (MIT Press, Cambridge, 2005).
[PubMed]

Z. Li, A. Y. C. Nee, S. K. Ong, and W. Gong, “Tampered image detection using image matching,” in Proceedings of the IEEE Computer Society Conference on Computer Graphics, Imaging and Visualization, (Penang, Malaysia, 2008), pp. 174–179.

V. Lepetit, and P. Fua, “Towards recognizing feature points using classification trees,” in Technical Report IC/2004/74. (EPFL, 2004).

E. Rosten, and T. Drummond, “Fusing points and lines for high performance tracking,” in Proceedings of the IEEE International Conference on Computer Vision (Beijing, China, 2005), pp. 1508–1515.

E. Rosten, and T. Drummond, “Machine learning for high-speed corner detection” in Proceedings of the European Conference on Computer Vision (Graz, Austria, 2006), pp. 430–443.

H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: speeded up robust features,” in Proceedings of the European Conference on Computer Vision (Graz, Austria, 2006), pp. 404–417.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Test library. Each sequence contains 6 images. From left to right: 1) ‘Boat’ sequence, 2) ‘Graffiti’ sequence, and 3) ‘Leuven’ campus sequence.

Fig. 2
Fig. 2

Flow chart of RS test.

Fig. 3(a), 3(b), and 3(c)
Fig. 3(a), 3(b), and 3(c)

Performance comparisons of different detectors. (a), (c) and (e) show the number of correspondences, and (b), (d) and (f) show the repeatability rate of ‘Boat’, ‘Graffiti’ and ‘Leuven’ campus sequence respectively.

Fig. 3(d), 3(e), and 3(f)
Fig. 3(d), 3(e), and 3(f)

Contiunation of Fig. 3.

Fig. 4
Fig. 4

Performance comparisons using RS test. (a), (b) and (c) show the RS rate of ‘Boat’, ‘Graffiti’ and ‘Leuven’ campus sequence respectively.

Fig. 5
Fig. 5

Matching results of image 1 and 4 in the ‘Graffiti’ sequence using SIFT (a) and MDSS (b).

Fig. 6
Fig. 6

Performance comparisons using RS test. Rows, from top to bottom: 1) ‘Boat’, 2) ‘Graffiti’, and 3) ‘Leuven’ campus sequence. Columns, from left to right: similarity computed by 1) PCACOS and 2) SSIM.

Tables (1)

Tables Icon

Table 1 Comparisons of different matching solutions

Metrics