Abstract

We present the design, optimization, fabrication and characterization of an optical mode filter, which attenuates the snaking behavior of light caused by a lateral misalignment of the input optical fiber relative to an optical circuit. The mode filter is realized as a bottleneck section inserted in an optical waveguide in front of a branching element. It is designed with Bézier curves. Its effect, which depends on the optical state of polarization, is experimentally demonstrated by investigating the equilibrium of an optical splitter, which is greatly improved however only in TM mode. The measured optical losses induced by the filter are 0.28 dB.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q1. L. J. Villegas Vicencio, A. V. Khomenko, J. L. Angel Valenzuela, R. Cardoso, D. Salazar, H. Marquez, and H. Porte, "Asymmetry of the output power of a symmetric Y-shaped integrated-optics splitter," J. Opt. Technol. 69, 54-57 (2002).
    [CrossRef]
  2. W. Klaus and W. R. Leeb, "Transient fields in the input coupling region of optical single-mode waveguides," Opt. Express 15,11808-11826 (2007).
    [CrossRef] [PubMed]
  3. D. Yap and L. M. Johnson, "Coupling between successive Ti:LiNbO3 waveguide bends and branches," Appl. Opt. 23, 2991-2998 (1984).
    [CrossRef] [PubMed]
  4. H. G. Kim, "Y-branched optical waveguide and multi-stage optical power splitter using the same," Samsung Electronics Co., European Patent No. EP 1 279 974 A3 (filed Apr. 4, 2002).
  5. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, "Integrated optic adiabatic polarization splitter on silicon," Appl. Phys. Lett. 56,120-121 (1990).
    [CrossRef]
  6. A. Klekamp, "Optical branching element," Sel Alcatel AG, European Patent No. EP 0 737 872 A3 (filed Apr. 13, 1995).
  7. K. Kashihara, "Arrayed waveguide grating multiplexer with tapered waveguides," Furukawa Electric Co., European Patent No. EP 1 113 297 (filed 2000).
  8. O. Osaka-shi, "Y-branching optical circuit," Nippon Sheet Glass Co., European Patent No. EP 0 484 878 B1 (filed Nov. 5, 1991).
  9. H. G. Kim, "Optical power splitter having a stabilizing waveguide," Samsung Electronics Co., United States Patent No. US 6,961,497 B2 (filed Nov. 25, 2002).
  10. A. Klekamp, P. Kersten, and W. Rehm, "An improved single-mode Y-branch design for cascaded 1:2 splitters," J. Lightwave Technol. 14, 2684-2686 (1996).
    [CrossRef]
  11. G. Farin, "Shape representation," in Wiley Encyclopedia of Electrical and Electronics Engineering, J. G. Webster, ed. (John Wiley & Sons, Inc., New York, 1999), vol. 19, .
  12. V. Magnin, L. Giraudet, J. Harari, J. Decobert, P. Pagnot, E. Boucherez, and D. Decoster, "Design, optimisation and fabrication of side-illuminated p-i-n photodetectors with high responsivity and high alignment tolerance for 1.3µm and 1.55µm wavelength use," J. Lightwave Technol. 20, 477-488 (2002).
    [CrossRef]
  13. M. Nowostawski and R. Poli, "Parallel genetic algorithm taxonomy," in 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems, L. C. Jain, ed., (Academic, Adelaide, South Australia, 1999), pp. 88-92.
  14. WaveMaker LAYOUT, Barnard Microsystems Limited, http://www.barnardmicrosystems.com/

2007

2002

1996

A. Klekamp, P. Kersten, and W. Rehm, "An improved single-mode Y-branch design for cascaded 1:2 splitters," J. Lightwave Technol. 14, 2684-2686 (1996).
[CrossRef]

1990

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, "Integrated optic adiabatic polarization splitter on silicon," Appl. Phys. Lett. 56,120-121 (1990).
[CrossRef]

1984

Angel Valenzuela, J. L.

Boucherez, E.

Cardoso, R.

Decobert, J.

Decoster, D.

Giraudet, L.

Harari, J.

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, "Integrated optic adiabatic polarization splitter on silicon," Appl. Phys. Lett. 56,120-121 (1990).
[CrossRef]

Johnson, L. M.

Kazarinov, R. F.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, "Integrated optic adiabatic polarization splitter on silicon," Appl. Phys. Lett. 56,120-121 (1990).
[CrossRef]

Kersten, P.

A. Klekamp, P. Kersten, and W. Rehm, "An improved single-mode Y-branch design for cascaded 1:2 splitters," J. Lightwave Technol. 14, 2684-2686 (1996).
[CrossRef]

Khomenko, A. V.

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, "Integrated optic adiabatic polarization splitter on silicon," Appl. Phys. Lett. 56,120-121 (1990).
[CrossRef]

Klaus, W.

Klekamp, A.

A. Klekamp, P. Kersten, and W. Rehm, "An improved single-mode Y-branch design for cascaded 1:2 splitters," J. Lightwave Technol. 14, 2684-2686 (1996).
[CrossRef]

Leeb, W. R.

Magnin, V.

Marquez, H.

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, "Integrated optic adiabatic polarization splitter on silicon," Appl. Phys. Lett. 56,120-121 (1990).
[CrossRef]

Pagnot, P.

Porte, H.

Rehm, W.

A. Klekamp, P. Kersten, and W. Rehm, "An improved single-mode Y-branch design for cascaded 1:2 splitters," J. Lightwave Technol. 14, 2684-2686 (1996).
[CrossRef]

Salazar, D.

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, "Integrated optic adiabatic polarization splitter on silicon," Appl. Phys. Lett. 56,120-121 (1990).
[CrossRef]

Villegas Vicencio, L. J.

Yap, D.

Appl. Opt.

Appl. Phys. Lett.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, "Integrated optic adiabatic polarization splitter on silicon," Appl. Phys. Lett. 56,120-121 (1990).
[CrossRef]

J. Lightwave Technol.

J. Opt. Technol.

Opt. Express

Other

H. G. Kim, "Y-branched optical waveguide and multi-stage optical power splitter using the same," Samsung Electronics Co., European Patent No. EP 1 279 974 A3 (filed Apr. 4, 2002).

G. Farin, "Shape representation," in Wiley Encyclopedia of Electrical and Electronics Engineering, J. G. Webster, ed. (John Wiley & Sons, Inc., New York, 1999), vol. 19, .

M. Nowostawski and R. Poli, "Parallel genetic algorithm taxonomy," in 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems, L. C. Jain, ed., (Academic, Adelaide, South Australia, 1999), pp. 88-92.

WaveMaker LAYOUT, Barnard Microsystems Limited, http://www.barnardmicrosystems.com/

A. Klekamp, "Optical branching element," Sel Alcatel AG, European Patent No. EP 0 737 872 A3 (filed Apr. 13, 1995).

K. Kashihara, "Arrayed waveguide grating multiplexer with tapered waveguides," Furukawa Electric Co., European Patent No. EP 1 113 297 (filed 2000).

O. Osaka-shi, "Y-branching optical circuit," Nippon Sheet Glass Co., European Patent No. EP 0 484 878 B1 (filed Nov. 5, 1991).

H. G. Kim, "Optical power splitter having a stabilizing waveguide," Samsung Electronics Co., United States Patent No. US 6,961,497 B2 (filed Nov. 25, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Structure of the input optical waveguide.

Fig. 2.
Fig. 2.

Schematic view of the device with the optimisation parameters (a) and examples of some possible morphologies (b, c, d, e).

Fig. 3.
Fig. 3.

Simulated propagation of light with different lateral shifts (0.2, 0.5 and 1 μm) of the optical input beam. Each top view has been obtained with a 3D-FD-BPM in TM mode. This permits to see the effect of a lateral shift without (on the left) and with modal filter (on the right). The effect of the filter is clearly shown when considering the decrease of the beam snaking amplitude and also the proportions of optical intensity at the splitter outputs in all cases. The last views (g and h) correspond to a reduction of the input waveguide length by 111 μm (half the snaking period). As can be seen in views c, e and g, there is an optical coupling between both branches at the beginning of the splitter.

Fig. 4.
Fig. 4.

Computed relative power of each output port Pi/(P1+P2) of the splitter without mode filter versus the misalignment of the input optical fiber, in TE and TM mode (3D-FD-BPM).

Fig. 5.
Fig. 5.

Cross-section of the guide and the optical beam (gray ellipse). The points (i,j,k) and (i’,j,k) are located symmetrically with respect to the vertical symmetry plane (dashed line). The dotted rectangle is a section of the volume used to compute the asymmetry coefficient.

Fig. 6.
Fig. 6.

Mask layout of the optimized mode filter. The beginning of the optical splitter is also shown. The vertical scale is strongly dilated to enhance clarity. The total length between the waveguide input and the splitter separation is 1110 μm. The cleaving marks are located 180 μm before the filter input.

Fig. 7.
Fig. 7.

SEM photograph of the mode filter. It is 1 μm wide at its center and its length is 524 μm.

Fig. 8.
Fig. 8.

Experimental setup.

Fig. 9.
Fig. 9.

Measured relative power of each output port Pi/(P1+P2) versus the misalignment of the input optical fiber, with and without filter, in TM mode.

Tables (2)

Tables Icon

Table 1. The seven dimensions search space of the genetic algorithm

Tables Icon

Table 2. The optimized device

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q 1 ( t ) = ( 1 t ) 3 B 1 + 3 t ( 1 t ) 2 B 2 + 3 t 2 ( 1 t ) B 3 + t 3 B 4
Q 2 ( t ) = ( 1 t ) 3 B 4 + 3 t ( 1 t ) 2 B 5 + 3 t 2 ( 1 t ) B 6 + t 3 B 7
a = i j k ( W ( i , j , k ) W ( i′ , j , k ) ) 2

Metrics