R. Antos, S. Visnovsky, J. Mistrik, and T. Yamaguchi, “Magneto-optical polar-Kerr-effect spectroscopy on 2D-periodic subwavelength arrays of magnetic dots,” International Journal of Microwave and Optical Technology 1, 905–909 (2006).

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).

[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).

[CrossRef]

B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).

[CrossRef]

S. Visnovsky and K. Yasumoto, “Multilayer anisotropic bi-periodic diffraction gratings,” Czech. J. Phys. 51, 229–247 (2001).

[CrossRef]

L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).

[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).

[CrossRef]
[PubMed]

D. Maystre, “Rigorous vector theories of diffraction gratings,” Prog. Opt. 21, 1–67 (1984).

[CrossRef]

R. Antos, S. Visnovsky, J. Mistrik, and T. Yamaguchi, “Magneto-optical polar-Kerr-effect spectroscopy on 2D-periodic subwavelength arrays of magnetic dots,” International Journal of Microwave and Optical Technology 1, 905–909 (2006).

R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).

[CrossRef]

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1997).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1997).

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).

[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).

[CrossRef]
[PubMed]

B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).

[CrossRef]
[PubMed]

R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).

[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light ( Princeton Univ., 1995)

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).

[CrossRef]

L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).

[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).

[CrossRef]

D. Maystre, “Rigorous vector theories of diffraction gratings,” Prog. Opt. 21, 1–67 (1984).

[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light ( Princeton Univ., 1995)

R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).

[CrossRef]

R. Antos, S. Visnovsky, J. Mistrik, and T. Yamaguchi, “Magneto-optical polar-Kerr-effect spectroscopy on 2D-periodic subwavelength arrays of magnetic dots,” International Journal of Microwave and Optical Technology 1, 905–909 (2006).

N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).

[CrossRef]

P. Boyer, E. Popov, M. Neviere, and G. Tayeb, “Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section,” J. Opt. Soc. Am. A 21, 2146–2153 (2004).

[CrossRef]

K. Watanabe, R. Petit, and M. Neviere, “Differential theory of gratings made of anisotropic materials,” J. Opt. Soc. Am. A 19, 325–334 (2002).

[CrossRef]

B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).

[CrossRef]

E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).

[CrossRef]

M. Neviere and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design (Marcel Dekker, New York, 2003).

P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17295.

[CrossRef]
[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).

[CrossRef]

R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).

[CrossRef]

R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).

[CrossRef]

P. Boyer, E. Popov, M. Neviere, and G. Tayeb, “Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section,” J. Opt. Soc. Am. A 21, 2146–2153 (2004).

[CrossRef]

B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).

[CrossRef]

E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).

[CrossRef]

M. Neviere and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design (Marcel Dekker, New York, 2003).

P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17295.

[CrossRef]
[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).

[CrossRef]

P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17295.

[CrossRef]
[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).

[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).

[CrossRef]
[PubMed]

R. Antos, S. Visnovsky, J. Mistrik, and T. Yamaguchi, “Magneto-optical polar-Kerr-effect spectroscopy on 2D-periodic subwavelength arrays of magnetic dots,” International Journal of Microwave and Optical Technology 1, 905–909 (2006).

R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).

[CrossRef]

S. Visnovsky and K. Yasumoto, “Multilayer anisotropic bi-periodic diffraction gratings,” Czech. J. Phys. 51, 229–247 (2001).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light ( Princeton Univ., 1995)

R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).

[CrossRef]

R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).

[CrossRef]

R. Antos, S. Visnovsky, J. Mistrik, and T. Yamaguchi, “Magneto-optical polar-Kerr-effect spectroscopy on 2D-periodic subwavelength arrays of magnetic dots,” International Journal of Microwave and Optical Technology 1, 905–909 (2006).

S. Visnovsky and K. Yasumoto, “Multilayer anisotropic bi-periodic diffraction gratings,” Czech. J. Phys. 51, 229–247 (2001).

[CrossRef]

S. Visnovsky and K. Yasumoto, “Multilayer anisotropic bi-periodic diffraction gratings,” Czech. J. Phys. 51, 229–247 (2001).

[CrossRef]

R. Antos, S. Visnovsky, J. Mistrik, and T. Yamaguchi, “Magneto-optical polar-Kerr-effect spectroscopy on 2D-periodic subwavelength arrays of magnetic dots,” International Journal of Microwave and Optical Technology 1, 905–909 (2006).

R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).

[CrossRef]

L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).

[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).

[CrossRef]

P. Boyer, E. Popov, M. Neviere, and G. Tayeb, “Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section,” J. Opt. Soc. Am. A 21, 2146–2153 (2004).

[CrossRef]

E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).

[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).

[CrossRef]

K. Watanabe, R. Petit, and M. Neviere, “Differential theory of gratings made of anisotropic materials,” J. Opt. Soc. Am. A 19, 325–334 (2002).

[CrossRef]

K. Watanabe, “Numerical integration schemes used on the differential theory for anisotropic gratings,” J. Opt. Soc. Am. A 19, 2245–2252 (2002).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995).

[CrossRef]

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).

[CrossRef]

S. Kaushik, “Vector Fresnel equations and Airy formula for one-dimensional multilayer and surface-relief gratings,” J. Opt. Soc. Am. A 14, 596–609 (1997).

[CrossRef]

T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).

[CrossRef]

E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three dimensional profiles,” J. Opt. Soc. Am. A 11, 2494–2502 (1994).

[CrossRef]

B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).

[CrossRef]
[PubMed]

D. Maystre, “Rigorous vector theories of diffraction gratings,” Prog. Opt. 21, 1–67 (1984).

[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light ( Princeton Univ., 1995)

R. Petit (ed.), Electromagnetic Theory of Gratings (Springer, 1980).

M. Neviere and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design (Marcel Dekker, New York, 2003).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1997).

E. D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, 1998).