Abstract

A photonic approach for microwave frequency measurement is proposed. In this approach, an optical carrier is modulated by an unknown microwave signal through a phase modulator. The modulated optical signal is then split into two parts; one part passes through a spool of polarization maintaining fiber (PMF) and the other one, through a dispersion compensation fiber (DCF), to introduce different microwave power penalties. After the microwave powers of the two parts are measured by two photodetectors, a fixed frequency-to-power mapping is established by obtaining an amplitude comparison function (ACF). A proof-of-concept experiment demonstrates frequency measurement over a range of 10.5 GHz, with measurement error less than ±0.07 GHz.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave. Technol. 24, 4628-4641 (2006).
    [CrossRef]
  2. J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
    [CrossRef]
  3. S. T. Winnall and A. C. Lindsay, "A Fabry-Perot scanning receiver for microwave signal processing," IEEE Trans. Microwave Theory Tech. 47, 1385-1390 (1999).
    [CrossRef]
  4. L. V. T. Nguyen and D. B. Hunter, "A Photonic Technique for Microwave Frequency Measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
    [CrossRef]
  5. X. Zou and J. Yao, "An Optical Approach to Microwave Frequency Measurement With Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett. 20, 1989-1991 (2008).
    [CrossRef]
  6. H. Chi, X. Zou and J. Yao, "An Approach to the Measurement of Microwave Frequency Based On Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
    [CrossRef]
  7. E. Ciaramella, A. D’Errico, R. Proietti, and G. Contestabile, "WDM-POLSK transmission systems by using semiconductor optical amplifiers," J. Lightwave Technol. 24, 4039-4046 (2006).
    [CrossRef]
  8. T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, "Tunable Photonic Microwave Notch Filter with Negative Coefficient based on Polarization Modulation," IEEE Photon. Technol. Lett. 19, 907-909 (2007).
    [CrossRef]
  9. Q. Wang and J. Yao, "Multitap Photonic Microwave Filters With Arbitrary Positive and Negative Coefficients using a Polarization Modulator and an Optical Polarizer," IEEE Photon. Technol. Lett. 20, 78-80 (2008).
    [CrossRef]
  10. G. X. Ning, S. Aditya, P. Shum, and N. Liu, "Tunable microwave filter that uses a high-birefringent fiber and a differential-group-delay element," J. Opt. Soc. Am. A 22, 913-916, (2005).
    [CrossRef]
  11. F. Zeng and J. P. Yao, "All-optical bandpass microwave filter based on an electro-optic phase modulator," Opt. Express 12, 3814-3819 (2004).
    [CrossRef] [PubMed]

2008 (3)

X. Zou and J. Yao, "An Optical Approach to Microwave Frequency Measurement With Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett. 20, 1989-1991 (2008).
[CrossRef]

H. Chi, X. Zou and J. Yao, "An Approach to the Measurement of Microwave Frequency Based On Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
[CrossRef]

Q. Wang and J. Yao, "Multitap Photonic Microwave Filters With Arbitrary Positive and Negative Coefficients using a Polarization Modulator and an Optical Polarizer," IEEE Photon. Technol. Lett. 20, 78-80 (2008).
[CrossRef]

2007 (2)

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, "Tunable Photonic Microwave Notch Filter with Negative Coefficient based on Polarization Modulation," IEEE Photon. Technol. Lett. 19, 907-909 (2007).
[CrossRef]

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

2006 (3)

A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave. Technol. 24, 4628-4641 (2006).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, "A Photonic Technique for Microwave Frequency Measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

E. Ciaramella, A. D’Errico, R. Proietti, and G. Contestabile, "WDM-POLSK transmission systems by using semiconductor optical amplifiers," J. Lightwave Technol. 24, 4039-4046 (2006).
[CrossRef]

2005 (1)

2004 (1)

1999 (1)

S. T. Winnall and A. C. Lindsay, "A Fabry-Perot scanning receiver for microwave signal processing," IEEE Trans. Microwave Theory Tech. 47, 1385-1390 (1999).
[CrossRef]

Aditya, S.

Capmany, J.

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

Chi, H.

H. Chi, X. Zou and J. Yao, "An Approach to the Measurement of Microwave Frequency Based On Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
[CrossRef]

Ciaramella, E.

Contestabile, G.

D’Errico, A.

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, "A Photonic Technique for Microwave Frequency Measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

Kim, S.-J.

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, "Tunable Photonic Microwave Notch Filter with Negative Coefficient based on Polarization Modulation," IEEE Photon. Technol. Lett. 19, 907-909 (2007).
[CrossRef]

Kim, T.-Y.

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, "Tunable Photonic Microwave Notch Filter with Negative Coefficient based on Polarization Modulation," IEEE Photon. Technol. Lett. 19, 907-909 (2007).
[CrossRef]

Lindsay, A. C.

S. T. Winnall and A. C. Lindsay, "A Fabry-Perot scanning receiver for microwave signal processing," IEEE Trans. Microwave Theory Tech. 47, 1385-1390 (1999).
[CrossRef]

Liu, N.

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, "A Photonic Technique for Microwave Frequency Measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

Ning, G. X.

Novak, D.

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

Oh, C. K.

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, "Tunable Photonic Microwave Notch Filter with Negative Coefficient based on Polarization Modulation," IEEE Photon. Technol. Lett. 19, 907-909 (2007).
[CrossRef]

Park, C.-S.

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, "Tunable Photonic Microwave Notch Filter with Negative Coefficient based on Polarization Modulation," IEEE Photon. Technol. Lett. 19, 907-909 (2007).
[CrossRef]

Proietti, R.

Seeds, A. J.

A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave. Technol. 24, 4628-4641 (2006).
[CrossRef]

Shum, P.

Wang, Q.

Q. Wang and J. Yao, "Multitap Photonic Microwave Filters With Arbitrary Positive and Negative Coefficients using a Polarization Modulator and an Optical Polarizer," IEEE Photon. Technol. Lett. 20, 78-80 (2008).
[CrossRef]

Williams, K. J.

A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave. Technol. 24, 4628-4641 (2006).
[CrossRef]

Winnall, S. T.

S. T. Winnall and A. C. Lindsay, "A Fabry-Perot scanning receiver for microwave signal processing," IEEE Trans. Microwave Theory Tech. 47, 1385-1390 (1999).
[CrossRef]

Yao, J.

X. Zou and J. Yao, "An Optical Approach to Microwave Frequency Measurement With Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett. 20, 1989-1991 (2008).
[CrossRef]

Q. Wang and J. Yao, "Multitap Photonic Microwave Filters With Arbitrary Positive and Negative Coefficients using a Polarization Modulator and an Optical Polarizer," IEEE Photon. Technol. Lett. 20, 78-80 (2008).
[CrossRef]

H. Chi, X. Zou and J. Yao, "An Approach to the Measurement of Microwave Frequency Based On Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
[CrossRef]

Yao, J. P.

Zeng, F.

Zou, X.

H. Chi, X. Zou and J. Yao, "An Approach to the Measurement of Microwave Frequency Based On Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
[CrossRef]

X. Zou and J. Yao, "An Optical Approach to Microwave Frequency Measurement With Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett. 20, 1989-1991 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

L. V. T. Nguyen and D. B. Hunter, "A Photonic Technique for Microwave Frequency Measurement," IEEE Photon. Technol. Lett. 18, 1188-1190 (2006).
[CrossRef]

X. Zou and J. Yao, "An Optical Approach to Microwave Frequency Measurement With Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett. 20, 1989-1991 (2008).
[CrossRef]

H. Chi, X. Zou and J. Yao, "An Approach to the Measurement of Microwave Frequency Based On Optical Power Monitoring," IEEE Photon. Technol. Lett. 20, 1249-1251 (2008).
[CrossRef]

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, "Tunable Photonic Microwave Notch Filter with Negative Coefficient based on Polarization Modulation," IEEE Photon. Technol. Lett. 19, 907-909 (2007).
[CrossRef]

Q. Wang and J. Yao, "Multitap Photonic Microwave Filters With Arbitrary Positive and Negative Coefficients using a Polarization Modulator and an Optical Polarizer," IEEE Photon. Technol. Lett. 20, 78-80 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. T. Winnall and A. C. Lindsay, "A Fabry-Perot scanning receiver for microwave signal processing," IEEE Trans. Microwave Theory Tech. 47, 1385-1390 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Lightwave. Technol. (1)

A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave. Technol. 24, 4628-4641 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007).
[CrossRef]

Opt. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed microwave frequency measurement system.

Fig. 2.
Fig. 2.

Power fading characteristics for the two parts of the signal and the corresponding ACF.

Fig. 3.
Fig. 3.

Measured power fading functions and ACF; calculated ACF is also included.

Fig. 4.
Fig. 4.

(a). Estimated frequency as a function of input frequency; (b) measurement error vs. the input frequency.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H L ( f ) = cos 2 ( πf Δ τ )
H B ( f ) = cos 2 ( πD λ c 2 f 2 c + π 2 )
ACF = H B H L = cos 2 ( πD λ c 2 f 2 c + π 2 ) cos 2 ( πf Δ τ )

Metrics