Abstract

We report the laser performance of resonantly diode-pumped Er:YAG from liquid nitrogen temperature to above room temperature. Relative to incident pump power, the best performance was observed at approximately 160 K. Spectroscopy and modeling show that this is due primarily to the changing efficiency of diode pump absorption as the absorption lines broaden with temperature. However, the physics of the Er:YAG system indicates that even with arbitrarily narrow pump linewidth the most efficient laser performance should occur at a temperature somewhat above 77 K. The causes of the temperature dependence are at least qualitatively understood.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
  2. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-Power/High-Brightness Diode-Pumped 1.9-μm Thulium and Resonantly Pumped 2.1-μm Holmium Lasers,” IEEE J. Sel. Top. In Quantum Electron. 6, 629–635 (2000).
  3. T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
  4. W. F. Krupke, “Ytterbium Solid-State Lasers - The First Decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1296 (2000) and references therein.
  5. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett. 29, 1075–1077 (2004).
    [PubMed]
  6. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).
  7. S. D. Setzler, M. W. Francis, and E. P. Chicklis, “A 100 mJ Q-switched 1645 nm Er:YAG Laser,” SPIE Defense and Security Symposium, paper6552–17 (2007).
  8. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).
  9. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).
  10. J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” SPIE 2391, 112–125 (1995).
  11. L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, Yb3+ and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
  12. R. L. Fork, W. W. Walker, R. L. Laycock, J. J. A. Green, and S. T. Cole, “Integrated diamond sapphire laser,” Opt. Express 11, 2532–2548 (2003).
    [PubMed]
  13. D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J Sel. Top. Quantum Electron. 11, 587–599 (2005).
  14. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
  15. T. Y. Fan, T. Crow, and B. Hoden, “Cooled Yb:YAG for high-power solid state lasers,” SPIE 3381, 200–205 (1998).
  16. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
  17. M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low Photon Defect Diode-Pumped Cryo-Cooled Er:YAG Laser,” Proc. SPIE 6552, 65520M (2007).
  18. M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low-Photon-Defect Cryo-Laser Performance of Resonantly Diode-Pumped Er3+:YAG,” Conference on Lasers and Electro-Optics 2007, paper CTuN1.
  19. N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er3+:Sc2O3 Laser,” Opt. Lett. 33, 1524–1526 (2008).
    [PubMed]
  20. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst. A 32, 751–767 (1976).
  21. J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. Russell III, T. H. Allik, and B. Zandi, “Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12”, J. Appl. Phys. 97, 063519 (2005).
  22. D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).
  23. A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, and S. E. Sarkisov, “Spectroscopic Properties and 3 μm Stimulated Emission of Er3+ Ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 Garnet Crystal Systems,” Phys. Stat. Sol. (a)  71, 291–312 (1982).
  24. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
  25. J. A. Koningstein and J. E. Geusic, “Energy Levels and Crystal-Field Calculations of Er3+ in Yttrium Aluminum Garnet,” Phys. Rev. 136, A726–A728 (1964).
  26. M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, “Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals,” Phys. Stat. Sol. (a)  35, 645–649 (1976).
  27. J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
  28. B. F. Aull and H. P. Jenssen, “Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
  29. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, FL, 1996), 188.
  30. R. J. Beach, “CW Theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).
  31. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” JOSA B 24, 2454–2460 (2007).

2008 (1)

2007 (4)

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” JOSA B 24, 2454–2460 (2007).

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low Photon Defect Diode-Pumped Cryo-Cooled Er:YAG Laser,” Proc. SPIE 6552, 65520M (2007).

S. D. Setzler, M. W. Francis, and E. P. Chicklis, “A 100 mJ Q-switched 1645 nm Er:YAG Laser,” SPIE Defense and Security Symposium, paper6552–17 (2007).

2005 (7)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. Russell III, T. H. Allik, and B. Zandi, “Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12”, J. Appl. Phys. 97, 063519 (2005).

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).

D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J Sel. Top. Quantum Electron. 11, 587–599 (2005).

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).

2004 (1)

2003 (1)

2000 (2)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-Power/High-Brightness Diode-Pumped 1.9-μm Thulium and Resonantly Pumped 2.1-μm Holmium Lasers,” IEEE J. Sel. Top. In Quantum Electron. 6, 629–635 (2000).

W. F. Krupke, “Ytterbium Solid-State Lasers - The First Decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1296 (2000) and references therein.

1998 (1)

T. Y. Fan, T. Crow, and B. Hoden, “Cooled Yb:YAG for high-power solid state lasers,” SPIE 3381, 200–205 (1998).

1997 (1)

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).

1995 (2)

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” SPIE 2391, 112–125 (1995).

R. J. Beach, “CW Theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).

1993 (2)

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

1982 (2)

B. F. Aull and H. P. Jenssen, “Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).

A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, and S. E. Sarkisov, “Spectroscopic Properties and 3 μm Stimulated Emission of Er3+ Ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 Garnet Crystal Systems,” Phys. Stat. Sol. (a)  71, 291–312 (1982).

1976 (2)

R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst. A 32, 751–767 (1976).

M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, “Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals,” Phys. Stat. Sol. (a)  35, 645–649 (1976).

1965 (1)

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, Yb3+ and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7, 127–129 (1965).

1964 (1)

J. A. Koningstein and J. E. Geusic, “Energy Levels and Crystal-Field Calculations of Er3+ in Yttrium Aluminum Garnet,” Phys. Rev. 136, A726–A728 (1964).

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).

Allik, T. H.

J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. Russell III, T. H. Allik, and B. Zandi, “Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12”, J. Appl. Phys. 97, 063519 (2005).

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

Ashurov, M. Kh.

M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, “Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals,” Phys. Stat. Sol. (a)  35, 645–649 (1976).

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).

Beach, R. J.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).

R. J. Beach, “CW Theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).

Brown, D. C.

D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J Sel. Top. Quantum Electron. 11, 587–599 (2005).

Budni, P. A.

Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett. 29, 1075–1077 (2004).
[PubMed]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-Power/High-Brightness Diode-Pumped 1.9-μm Thulium and Resonantly Pumped 2.1-μm Holmium Lasers,” IEEE J. Sel. Top. In Quantum Electron. 6, 629–635 (2000).

Butaeva, T. I.

A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, and S. E. Sarkisov, “Spectroscopic Properties and 3 μm Stimulated Emission of Er3+ Ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 Garnet Crystal Systems,” Phys. Stat. Sol. (a)  71, 291–312 (1982).

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Cheney, F.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” SPIE 2391, 112–125 (1995).

Chicklis, E. P.

S. D. Setzler, M. W. Francis, and E. P. Chicklis, “A 100 mJ Q-switched 1645 nm Er:YAG Laser,” SPIE Defense and Security Symposium, paper6552–17 (2007).

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett. 29, 1075–1077 (2004).
[PubMed]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-Power/High-Brightness Diode-Pumped 1.9-μm Thulium and Resonantly Pumped 2.1-μm Holmium Lasers,” IEEE J. Sel. Top. In Quantum Electron. 6, 629–635 (2000).

Cole, S. T.

Crow, T.

T. Y. Fan, T. Crow, and B. Hoden, “Cooled Yb:YAG for high-power solid state lasers,” SPIE 3381, 200–205 (1998).

Denisenko, G. A.

A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, and S. E. Sarkisov, “Spectroscopic Properties and 3 μm Stimulated Emission of Er3+ Ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 Garnet Crystal Systems,” Phys. Stat. Sol. (a)  71, 291–312 (1982).

Dubinskii, M.

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er3+:Sc2O3 Laser,” Opt. Lett. 33, 1524–1526 (2008).
[PubMed]

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low Photon Defect Diode-Pumped Cryo-Cooled Er:YAG Laser,” Proc. SPIE 6552, 65520M (2007).

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” JOSA B 24, 2454–2460 (2007).

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low-Photon-Defect Cryo-Laser Performance of Resonantly Diode-Pumped Er3+:YAG,” Conference on Lasers and Electro-Optics 2007, paper CTuN1.

Edsall, P.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” SPIE 2391, 112–125 (1995).

Emanuel, M. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).

T. Y. Fan, T. Crow, and B. Hoden, “Cooled Yb:YAG for high-power solid state lasers,” SPIE 3381, 200–205 (1998).

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).

Fedorov, V. A.

A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, and S. E. Sarkisov, “Spectroscopic Properties and 3 μm Stimulated Emission of Er3+ Ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 Garnet Crystal Systems,” Phys. Stat. Sol. (a)  71, 291–312 (1982).

Fork, R. L.

Francis, M. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

Francis, M. W.

S. D. Setzler, M. W. Francis, and E. P. Chicklis, “A 100 mJ Q-switched 1645 nm Er:YAG Laser,” SPIE Defense and Security Symposium, paper6552–17 (2007).

Gagliano, D. A.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” SPIE 2391, 112–125 (1995).

Garbuzov, D.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” JOSA B 24, 2454–2460 (2007).

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).

Geusic, J. E.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, Yb3+ and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7, 127–129 (1965).

J. A. Koningstein and J. E. Geusic, “Energy Levels and Crystal-Field Calculations of Er3+ in Yttrium Aluminum Garnet,” Phys. Rev. 136, A726–A728 (1964).

Green, J. J. A.

Gruber, J. B.

J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. Russell III, T. H. Allik, and B. Zandi, “Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12”, J. Appl. Phys. 97, 063519 (2005).

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

Hills, M. E.

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

Hoden, B.

T. Y. Fan, T. Crow, and B. Hoden, “Cooled Yb:YAG for high-power solid state lasers,” SPIE 3381, 200–205 (1998).

Honea, E. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).

Ikesue, A.

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).

Johnson, L. F.

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, Yb3+ and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7, 127–129 (1965).

Kaminskii, A. A.

A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, and S. E. Sarkisov, “Spectroscopic Properties and 3 μm Stimulated Emission of Er3+ Ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 Garnet Crystal Systems,” Phys. Stat. Sol. (a)  71, 291–312 (1982).

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, FL, 1996), 188.

Koningstein, J. A.

J. A. Koningstein and J. E. Geusic, “Energy Levels and Crystal-Field Calculations of Er3+ in Yttrium Aluminum Garnet,” Phys. Rev. 136, A726–A728 (1964).

Konves, J. R.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

Krupke, W. F.

W. F. Krupke, “Ytterbium Solid-State Lasers - The First Decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1296 (2000) and references therein.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Kudryashov, I.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” JOSA B 24, 2454–2460 (2007).

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Laycock, R. L.

Lemons, M. L.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-Power/High-Brightness Diode-Pumped 1.9-μm Thulium and Resonantly Pumped 2.1-μm Holmium Lasers,” IEEE J. Sel. Top. In Quantum Electron. 6, 629–635 (2000).

Lund, D. J.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” SPIE 2391, 112–125 (1995).

Merkle, L. D.

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er3+:Sc2O3 Laser,” Opt. Lett. 33, 1524–1526 (2008).
[PubMed]

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low Photon Defect Diode-Pumped Cryo-Cooled Er:YAG Laser,” Proc. SPIE 6552, 65520M (2007).

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” JOSA B 24, 2454–2460 (2007).

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low-Photon-Defect Cryo-Laser Performance of Resonantly Diode-Pumped Er3+:YAG,” Conference on Lasers and Electro-Optics 2007, paper CTuN1.

Mitchell, S. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).

Morrison, C. A.

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

Mosto, J. R.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-Power/High-Brightness Diode-Pumped 1.9-μm Thulium and Resonantly Pumped 2.1-μm Holmium Lasers,” IEEE J. Sel. Top. In Quantum Electron. 6, 629–635 (2000).

Newburgh, G. A.

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low Photon Defect Diode-Pumped Cryo-Cooled Er:YAG Laser,” Proc. SPIE 6552, 65520M (2007).

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low-Photon-Defect Cryo-Laser Performance of Resonantly Diode-Pumped Er3+:YAG,” Conference on Lasers and Electro-Optics 2007, paper CTuN1.

Nijjar, A. S.

J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. Russell III, T. H. Allik, and B. Zandi, “Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12”, J. Appl. Phys. 97, 063519 (2005).

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).

Osiko, V. V.

M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, “Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals,” Phys. Stat. Sol. (a)  35, 645–649 (1976).

Payne, S. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Petrosyan, A. G.

A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, and S. E. Sarkisov, “Spectroscopic Properties and 3 μm Stimulated Emission of Er3+ Ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 Garnet Crystal Systems,” Phys. Stat. Sol. (a)  71, 291–312 (1982).

Pollak, T. M.

Quaqliano, J. R.

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

Reid, M. F.

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

Richardson, F. S.

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).

Russell III, C.

J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. Russell III, T. H. Allik, and B. Zandi, “Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12”, J. Appl. Phys. 97, 063519 (2005).

Russell III, C. C.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).

Sardar, D. K.

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).

J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. Russell III, T. H. Allik, and B. Zandi, “Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12”, J. Appl. Phys. 97, 063519 (2005).

Sarkisov, S. E.

A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, and S. E. Sarkisov, “Spectroscopic Properties and 3 μm Stimulated Emission of Er3+ Ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 Garnet Crystal Systems,” Phys. Stat. Sol. (a)  71, 291–312 (1982).

Seltzer, M. D.

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

Setzler, S. D.

S. D. Setzler, M. W. Francis, and E. P. Chicklis, “A 100 mJ Q-switched 1645 nm Er:YAG Laser,” SPIE Defense and Security Symposium, paper6552–17 (2007).

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett. 29, 1075–1077 (2004).
[PubMed]

Shannon, R. D.

R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst. A 32, 751–767 (1976).

Skidmore, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

Snell, K. J.

Sobol, A. A.

M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, “Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals,” Phys. Stat. Sol. (a)  35, 645–649 (1976).

Speth, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).

Starikov, B. P.

M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, “Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals,” Phys. Stat. Sol. (a)  35, 645–649 (1976).

Stevens, S. B.

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

Stuck, B. E.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” SPIE 2391, 112–125 (1995).

Sutton, S. B.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).

Ter-Gabrielyan, N.

N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er3+:Sc2O3 Laser,” Opt. Lett. 33, 1524–1526 (2008).
[PubMed]

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low Photon Defect Diode-Pumped Cryo-Cooled Er:YAG Laser,” Proc. SPIE 6552, 65520M (2007).

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low-Photon-Defect Cryo-Laser Performance of Resonantly Diode-Pumped Er3+:YAG,” Conference on Lasers and Electro-Optics 2007, paper CTuN1.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).

Timoshechkin, M. I.

M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, “Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals,” Phys. Stat. Sol. (a)  35, 645–649 (1976).

Uitert, L. G. Van

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, Yb3+ and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7, 127–129 (1965).

Voronko, Yu. K.

M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, “Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals,” Phys. Stat. Sol. (a)  35, 645–649 (1976).

Walker, W. W.

White, J. O.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” JOSA B 24, 2454–2460 (2007).

Yablonskii, A. Ya.

M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, “Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals,” Phys. Stat. Sol. (a)  35, 645–649 (1976).

Young, Y. E.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett. 29, 1075–1077 (2004).
[PubMed]

Yow, R. M.

J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. Russell III, T. H. Allik, and B. Zandi, “Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12”, J. Appl. Phys. 97, 063519 (2005).

Zandi, B.

J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. Russell III, T. H. Allik, and B. Zandi, “Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12”, J. Appl. Phys. 97, 063519 (2005).

Zuclich, J. A.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” SPIE 2391, 112–125 (1995).

Zwick, H.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” SPIE 2391, 112–125 (1995).

Acta Cryst. (1)

R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst. A 32, 751–767 (1976).

Appl. Phys. Lett. (3)

L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent Oscillations from Tm3+, Ho3+, Yb3+ and Er3+ Ions in Yttrium Aluminum Garnet,” Appl. Phys. Lett. 7, 127–129 (1965).

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87, 121101 (2005).

IEEE J Sel. Top. Quantum Electron. (1)

D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J Sel. Top. Quantum Electron. 11, 587–599 (2005).

IEEE J. Quantum Electron. (4)

B. F. Aull and H. P. Jenssen, “Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG Diode-Pumped Solid-State Laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).

IEEE J. Sel. Top. In Quantum Electron. (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-Power/High-Brightness Diode-Pumped 1.9-μm Thulium and Resonantly Pumped 2.1-μm Holmium Lasers,” IEEE J. Sel. Top. In Quantum Electron. 6, 629–635 (2000).

IEEE J. Sel. Top. Quantum Electron. (3)

W. F. Krupke, “Ytterbium Solid-State Lasers - The First Decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1296 (2000) and references therein.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).

J. Appl. Phys. (3)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).

J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. Russell III, T. H. Allik, and B. Zandi, “Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12”, J. Appl. Phys. 97, 063519 (2005).

D. K. Sardar, C. C. Russell III, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97, 123501 (2005).

JOSA B (1)

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, “Resonant pumping and upconversion in 1.6 μm Er3+ lasers,” JOSA B 24, 2454–2460 (2007).

Opt. Commun. (1)

R. J. Beach, “CW Theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. (1)

J. A. Koningstein and J. E. Geusic, “Energy Levels and Crystal-Field Calculations of Er3+ in Yttrium Aluminum Garnet,” Phys. Rev. 136, A726–A728 (1964).

Phys. Rev. B (1)

J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).

Phys. Stat. Sol. (2)

M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, “Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals,” Phys. Stat. Sol. (a)  35, 645–649 (1976).

A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, and S. E. Sarkisov, “Spectroscopic Properties and 3 μm Stimulated Emission of Er3+ Ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 Garnet Crystal Systems,” Phys. Stat. Sol. (a)  71, 291–312 (1982).

Proc. SPIE (1)

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low Photon Defect Diode-Pumped Cryo-Cooled Er:YAG Laser,” Proc. SPIE 6552, 65520M (2007).

SPIE (2)

T. Y. Fan, T. Crow, and B. Hoden, “Cooled Yb:YAG for high-power solid state lasers,” SPIE 3381, 200–205 (1998).

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” SPIE 2391, 112–125 (1995).

SPIE Defense and Security Symposium, paper (1)

S. D. Setzler, M. W. Francis, and E. P. Chicklis, “A 100 mJ Q-switched 1645 nm Er:YAG Laser,” SPIE Defense and Security Symposium, paper6552–17 (2007).

Other (2)

M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, “Ultra-Low-Photon-Defect Cryo-Laser Performance of Resonantly Diode-Pumped Er3+:YAG,” Conference on Lasers and Electro-Optics 2007, paper CTuN1.

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, FL, 1996), 188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Apparatus for low-temperature laser experiments. A: Pump laser diode array. B: Pump beam focusing optics. C: dichroic mirror. D: Output coupler. E: Er:YAG laser gain medium. F: Liquid nitrogen optical cryostat.

Fig. 2.
Fig. 2.

Laser performance of 2% Er:YAG at approximately 78 K, with output coupler reflectivity = 0.9. The error bars represent the estimated uncertainty of ±10% for the absorbed pump and ±5% for the output.

Fig. 3.
Fig. 3.

Laser output of 2% Er:YAG vs temperature for fixed incident pump power. Solid curve: experimental data. Open circles: fit with pump area = 0.050 cm2 and mode fill efficiency = 0.5. The dotted curve is a guide to the eye. Filled triangles: fit with pump area = 0.35 cm2 and mode fill efficiency = 0.6. The error bar represents the ±5% uncertainty in output energy.

Fig. 4.
Fig. 4.

Ground state absorption (dashed curves) and stimulated emission (solid curves) spectra of 0.5% Er:YAG at 77, 150 and 300 K.

Fig. 5.
Fig. 5.

Single-pass transmission of the diode laser array pump by 2% Er:YAG laser sample at two temperatures. Dashed curve: incident pump spectrum. Solid curve: calculated transmitted pump spectrum.

Tables (3)

Tables Icon

Table 1. Temperature dependence of the fluorescence lifetime of 0.5% Er:YAG, averaged over the two emission wavelengths.

Tables Icon

Table 2. Temperature dependence of the fraction of diode pump power absorbed, based on spectroscopically determined absorption.

Tables Icon

Table 3. Temperature-dependent parameters used in laser wavelength and power models. The meanings of the symbols are given in the text.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g net = σ true · n Er · 2 L gain · ( f exc · f UL ( 1 f exc ) · f LL ) + ln ( R OC ) 0
η slope = F pump · η M · v L v P · 1 R OC R OC · 1 ( exp ( σ true · N 21 ) 1 ) · ( T 2 · exp ( σ true · N 21 ) + 1 )
P thr = h v p · N 2 · A F pump · τ
N 2 = F LL · n Er · L gain + ln ( 1 T 2 · R OC ) 2 σ true f LL + f UL
N 21 = ( f LL + f UL ) · N 2 f LL · n Er · L gain

Metrics