Abstract

A class of active terahertz devices that operate via particle plasmon oscillations is introduced for ensembles consisting of ferromagnetic and dielectric micro-particles. By utilizing an interplay between spin-orbit interaction manifesting as anisotropic magnetoresistance and the optical distance between ferromagnetic particles, a multifaceted paradigm for device design is demonstrated. Here, the phase accumulation of terahertz radiation across the device is actively modulated via the application of an external magnetic field. An active plasmonic directional router and an active plasmonic cylindrical lens are theoretically explored using both an empirical approach and finite-difference time-domain calculations. These findings are experimentally supported.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  2. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  3. W. Zhu, A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express 16, 6216-6226 (2008).
    [CrossRef] [PubMed]
  4. K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent Plasmonic Enhanced Terahertz Transmission through Random Metallic Media," Phys. Rev. Lett. 94, 173904 (2005).
    [CrossRef] [PubMed]
  5. K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005).
    [CrossRef]
  6. K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006).
    [CrossRef] [PubMed]
  7. K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
    [CrossRef]
  8. K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007).
    [CrossRef] [PubMed]
  9. A. Y. Elezzabi, K. J. Chau, C. A. Baron, and P. Maraghechi, "A plasmonic random composite with atypical refractive index," Opt. Express 17, 1016-1022 (2009).
    [CrossRef] [PubMed]
  10. C. A. Baron and A. Y. Elezzabi, "A magnetically active terahertz plasmonic artificial material," Appl. Phys. Lett. 94, 071115 (2009).
    [CrossRef]
  11. T. R. McGuire and R. I. Potter, "Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys," IEEE Trans. Magn. 11, 1018-1038 (1975).
    [CrossRef]
  12. A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).
  13. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  14. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr, L. L. Long, and M. R. Querry, " Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Appl. Opt. 24, 4493-4499 (1985).
    [CrossRef] [PubMed]
  15. C. A. Baron and A. Y. Elezzabi, " A 360° angularly ranging time-domain terahertz spectroscopy system," Meas. Sci. Technol. 19, 065602 (2008).
    [CrossRef]
  16. J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi "Free-Space Detection of Terahertz Radiation Using Crystalline and Polycrystalline ZnSe Electro-optic Sensors," Appl. Phys. Lett. 81, 2294-2296 (2002).
    [CrossRef]

2009

C. A. Baron and A. Y. Elezzabi, "A magnetically active terahertz plasmonic artificial material," Appl. Phys. Lett. 94, 071115 (2009).
[CrossRef]

A. Y. Elezzabi, K. J. Chau, C. A. Baron, and P. Maraghechi, "A plasmonic random composite with atypical refractive index," Opt. Express 17, 1016-1022 (2009).
[CrossRef] [PubMed]

2008

W. Zhu, A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express 16, 6216-6226 (2008).
[CrossRef] [PubMed]

C. A. Baron and A. Y. Elezzabi, " A 360° angularly ranging time-domain terahertz spectroscopy system," Meas. Sci. Technol. 19, 065602 (2008).
[CrossRef]

2007

K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
[CrossRef]

K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

2006

K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006).
[CrossRef] [PubMed]

2005

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent Plasmonic Enhanced Terahertz Transmission through Random Metallic Media," Phys. Rev. Lett. 94, 173904 (2005).
[CrossRef] [PubMed]

K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005).
[CrossRef]

2004

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

2002

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi "Free-Space Detection of Terahertz Radiation Using Crystalline and Polycrystalline ZnSe Electro-optic Sensors," Appl. Phys. Lett. 81, 2294-2296 (2002).
[CrossRef]

1990

1985

1975

T. R. McGuire and R. I. Potter, "Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys," IEEE Trans. Magn. 11, 1018-1038 (1975).
[CrossRef]

Agrawal, A.

Alexander, R. W.

Atwater, H. A.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Baron, C. A.

A. Y. Elezzabi, K. J. Chau, C. A. Baron, and P. Maraghechi, "A plasmonic random composite with atypical refractive index," Opt. Express 17, 1016-1022 (2009).
[CrossRef] [PubMed]

C. A. Baron and A. Y. Elezzabi, "A magnetically active terahertz plasmonic artificial material," Appl. Phys. Lett. 94, 071115 (2009).
[CrossRef]

C. A. Baron and A. Y. Elezzabi, " A 360° angularly ranging time-domain terahertz spectroscopy system," Meas. Sci. Technol. 19, 065602 (2008).
[CrossRef]

K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
[CrossRef]

Bell, R. J.

Chau, K. J.

A. Y. Elezzabi, K. J. Chau, C. A. Baron, and P. Maraghechi, "A plasmonic random composite with atypical refractive index," Opt. Express 17, 1016-1022 (2009).
[CrossRef] [PubMed]

K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
[CrossRef]

K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006).
[CrossRef] [PubMed]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent Plasmonic Enhanced Terahertz Transmission through Random Metallic Media," Phys. Rev. Lett. 94, 173904 (2005).
[CrossRef] [PubMed]

K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005).
[CrossRef]

Dice, G. D.

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent Plasmonic Enhanced Terahertz Transmission through Random Metallic Media," Phys. Rev. Lett. 94, 173904 (2005).
[CrossRef] [PubMed]

Elezzabi, A. Y.

C. A. Baron and A. Y. Elezzabi, "A magnetically active terahertz plasmonic artificial material," Appl. Phys. Lett. 94, 071115 (2009).
[CrossRef]

A. Y. Elezzabi, K. J. Chau, C. A. Baron, and P. Maraghechi, "A plasmonic random composite with atypical refractive index," Opt. Express 17, 1016-1022 (2009).
[CrossRef] [PubMed]

C. A. Baron and A. Y. Elezzabi, " A 360° angularly ranging time-domain terahertz spectroscopy system," Meas. Sci. Technol. 19, 065602 (2008).
[CrossRef]

K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
[CrossRef]

K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006).
[CrossRef] [PubMed]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent Plasmonic Enhanced Terahertz Transmission through Random Metallic Media," Phys. Rev. Lett. 94, 173904 (2005).
[CrossRef] [PubMed]

K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005).
[CrossRef]

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi "Free-Space Detection of Terahertz Radiation Using Crystalline and Polycrystalline ZnSe Electro-optic Sensors," Appl. Phys. Lett. 81, 2294-2296 (2002).
[CrossRef]

Fattinger, Ch.

Grischkowsky, D.

Holzman, J. F.

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi "Free-Space Detection of Terahertz Radiation Using Crystalline and Polycrystalline ZnSe Electro-optic Sensors," Appl. Phys. Lett. 81, 2294-2296 (2002).
[CrossRef]

Irvine, S. E.

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi "Free-Space Detection of Terahertz Radiation Using Crystalline and Polycrystalline ZnSe Electro-optic Sensors," Appl. Phys. Lett. 81, 2294-2296 (2002).
[CrossRef]

Johnson, M.

K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

Keiding, S.

Long, L. L.

Maier, S. A.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Maraghechi, P.

McGuire, T. R.

T. R. McGuire and R. I. Potter, "Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys," IEEE Trans. Magn. 11, 1018-1038 (1975).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Nahata, A.

Ordal, M. A.

Potter, R. I.

T. R. McGuire and R. I. Potter, "Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys," IEEE Trans. Magn. 11, 1018-1038 (1975).
[CrossRef]

Querry, M. R.

van Exter, M.

Vermeulen, F. E.

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi "Free-Space Detection of Terahertz Radiation Using Crystalline and Polycrystalline ZnSe Electro-optic Sensors," Appl. Phys. Lett. 81, 2294-2296 (2002).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Zhu, W.

Appl. Opt.

Appl. Phys. Lett.

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi "Free-Space Detection of Terahertz Radiation Using Crystalline and Polycrystalline ZnSe Electro-optic Sensors," Appl. Phys. Lett. 81, 2294-2296 (2002).
[CrossRef]

K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
[CrossRef]

C. A. Baron and A. Y. Elezzabi, "A magnetically active terahertz plasmonic artificial material," Appl. Phys. Lett. 94, 071115 (2009).
[CrossRef]

IEEE Trans. Magn.

T. R. McGuire and R. I. Potter, "Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys," IEEE Trans. Magn. 11, 1018-1038 (1975).
[CrossRef]

J. Appl. Phys.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

C. A. Baron and A. Y. Elezzabi, " A 360° angularly ranging time-domain terahertz spectroscopy system," Meas. Sci. Technol. 19, 065602 (2008).
[CrossRef]

Nature

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005).
[CrossRef]

Phys. Rev. Lett.

K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006).
[CrossRef] [PubMed]

K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent Plasmonic Enhanced Terahertz Transmission through Random Metallic Media," Phys. Rev. Lett. 94, 173904 (2005).
[CrossRef] [PubMed]

Other

A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a). Schematic diagram illustrating the deflection of terahertz radiation by a collection of sapphire and Co particles having a linearly varying τ C. Panel (b) depicts how the application of B results in a position-dependent effective refractive index increase by Δn B . Therefore, with the application of B, the overall effective index becomes n + Δ nB , and the THz deflection is reduced compared to the deflection prior the application of B.

Fig. 2.
Fig. 2.

(a) Schematic diagram illustrating the focusing of terahertz radiation by a collection of sapphire and Co particles having a non-linearly varying τ C. Panel (b) depicts how the application of B results in a position-dependent effective refractive index increase by ΔnB . Therefore, with the application of B, the overall effective index becomes n + ΔnB , and the THz focal length is increased compared to the focal length prior the application of B.

Fig. 3.
Fig. 3.

(a). Depiction of the sapphire (green) and Co (black) particle distribution for the plasmonic router implemented in the FDTD calculations. Panels (b) - (f) depict snapshots of the electric field amplitude at times of 10 ps, 15 ps, 20 ps, 25 ps, and 50 ps after a THz pulse is incident on the device, respectively. The box in (b) - (f) indicates the location of the particles shown in (a).

Fig. 4.
Fig. 4.

(a). Depiction of the sapphire (green) and Co (black) particle orientation for the plasmonic lens implemented in the FDTD calculations. Panels (b) and (c) depict snapshots of the electric field amplitude after a collimated THz pulse has passed through the device and free space, respectively. The box in (b) indicates the location of the particles shown in (a). Panel (d) depicts the intensity profile for the dominant lobe of the pulse for transmission through the device (blue) and free space (green).

Fig. 5.
Fig. 5.

(a). Depiction of the experimental device configuration, where B is applied parallel to the THz electric field polarization. Regions I, II, III, IV, and V correspond to τ C = 1, 0.92, 0.81, 0.73, and 0.67, respectively. Panel (b) depicts the electric field of a THz pulse transmitted through an empty cell, and (c) depicts the THz pulses transmitted through the plasmonic router for θ varying from 20° to -5°.

Fig. 6.
Fig. 6.

(a). The time averaged energy flux of THz pulses transmitted through the plasmonic router (blue) and an empty cell (green). Panel (b) depicts P for samples S1 (light blue) and S2 (black). A Gaussian regression line is applied to the data in (a) and (b) using a least-squares estimation. Panel (c) depicts the on-axis THz signals transmitted through samples S1 and S2, where a 2 ps relative delay is observed. Panel (d) depicts the normalized P(f) for THz pulses transmitted through the plasmonic router and measured at various θ.

Fig. 7.
Fig. 7.

(a). The time averaged energy flux of the horizontally (blue) and vertically (red) polarized THz pulses transmitted through the plasmonic router. The diagram in panel (b) illustrates how portions of the wavefront that pass through regions with low τ C map to values of θ far from 0°.

Fig. 8.
Fig. 8.

Depiction of P(θ) for THz pulses transmitted through the plasmonic router with external magnetic field strengths of 0 mT, 27 mT, 45 mT, 55 mT, 69 mT, and 78 mT. The inset displays a top view of the figure and identifies Θ(B), which are located at the center of the Gaussian regression lines, for the given magnetic field strengths.

Fig. 9.
Fig. 9.

(a). Plot of K 2 as a function of external magnetic field strength and frequency of the transmitted THz pulses. Panel (b) depicts the values of K 2 calculated directly from the measured Θ(B) and, given such a dependence of K 2 on B, panel (c) depicts the expected magnetic dependence of focal length for a plasmonic lens.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

φ C = V C / ( V C + V S ) ,
n 0.67 d = n 1 d + a
= n 1 d + w sin Θ .
sin Θ = Q 1 ( n 0.67 n 1 w ) d .
Δ τ B = K 1 ( B ) N C d ,
Δ τ B = K 1 ( B ) V Cell pf V C d φ C .
Θ ( B ) = sin 1 ( Q 1 d ( n 0.67 n 1 w C K 1 ( B ) V Cell pf w V C d 2 ) )
= sin 1 ( Q 1 d ( n 0.67 n 1 K 2 ( B ) w ) ) ,
w 2 / 4 + F 2 F = Q 2 d ( n 0.67 n 1 )
n ( x ) = n 0.67 x 2 + F 2 F d ,
F = w 2 8 Q 2 d ( n 0.67 n 1 )
n ( x ) = n 0.67 x 2 2 Fd .
F ( B ) = w 2 8 Q 2 d ( n 0.67 n 1 K 2 ( B ) ) .
P ( θ ) E ( f , θ ) E * ( f , θ ) f ,
P ( f , θ , B ) E ( f , θ , B ) E * ( f , θ , B ) .

Metrics