Abstract

We demonstrated a Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium niobate crystal. THz-wave output was enhanced about 50 times by suppressing phase mismatching for THz-wave propagation direction. The suppression was achieved by combining two pumping waves with dual wavelength with finite angle, and THz-frequency was controllable by changing the angle within 2.5 degrees range. Higher frequency THz-wave generation at around 4.0 THz was successfully obtained by the method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, " Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
    [CrossRef]
  2. A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994).
    [CrossRef]
  3. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002).
    [CrossRef]
  4. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003).
    [CrossRef]
  5. Y. Avetisyan, Y. Sasaki, and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).
  6. Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
    [CrossRef]
  7. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, "Surface-emitted terahertz-wave difference frequency generation in two-dimensional periodically poled lithium niobate," Opt. Lett. 30, 2927-2929 (2005).
    [CrossRef] [PubMed]
  8. Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41, 712-713 (2005).
    [CrossRef]
  9. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
    [CrossRef]
  10. D. A. Kleinman and D. H. Auston, "Theory of electro-optic shock radiation in nonlinear optical media," IEEE J. Quantum Electron. 20, 964-970 (1984).
    [CrossRef]
  11. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161-1166 (2002).
    [PubMed]
  12. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 ?J ultrashort THz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).
    [CrossRef]
  13. S. B. Bodrov, A. N. Stepanov, M. I. Bakunov, B. V. Shishkin1, I. E. Ilyakov, and R. A. Akhmedzhanov, "Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core," Opt. Express 17, 1871-1879 (2009).
    [CrossRef] [PubMed]
  14. K. Suizu, T. Tutui, T. Shibuya, T. Akiba, and K. Kawase, "Cherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with lithium niobate crystal," Opt. Express 16, 7493-7498 (2008).
    [CrossRef] [PubMed]
  15. H. Ito and T. Ikari et al. recently clarified that a pulse energy of about 101 pJ/pulse corresponded to a Si-bolometer voltage output of 1 V. We adopted the novel calibration data.
  16. R. L. Sutherland, Handbook of Nonlinear Optics, (Marcel Dekker, New York (2003), Chap. 2.
    [CrossRef]
  17. T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, "Efficient Cherenkov-Type Phase-Matched Widely Tunable THz-Wave Generation via an Optimized Pump Beam Shape," Appl. Phys. Express 2, 032302 (2009).
    [CrossRef]
  18. J. K. Wahlstrand and R. Merlin, "Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons," Phys. Rev. B 68, 054301 (2003).
    [CrossRef]
  19. D. H. Jundt, "Temperature-dependent sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  20. H. Ito, K. Suizu, T. Yamashita, and T. Sato, "Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal," Jpn. J. Appl. Phys. 46, 7321-7324 (2007).
    [CrossRef]
  21. L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).
    [CrossRef]
  22. K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982 - L984 (2007).
    [CrossRef]
  23. K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-197 (2002).
    [CrossRef]
  24. P. E. Powers, R. A. Alkuwari, J. W. Haus, K. Suizu, H. Ito, "Terahertz generation with tandem seeded optical parametric generators," Opt. Lett. 30, 640-642 (2005).
    [CrossRef] [PubMed]

2009 (2)

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, "Efficient Cherenkov-Type Phase-Matched Widely Tunable THz-Wave Generation via an Optimized Pump Beam Shape," Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

S. B. Bodrov, A. N. Stepanov, M. I. Bakunov, B. V. Shishkin1, I. E. Ilyakov, and R. A. Akhmedzhanov, "Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core," Opt. Express 17, 1871-1879 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (3)

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 ?J ultrashort THz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

H. Ito, K. Suizu, T. Yamashita, and T. Sato, "Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal," Jpn. J. Appl. Phys. 46, 7321-7324 (2007).
[CrossRef]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982 - L984 (2007).
[CrossRef]

2005 (4)

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41, 712-713 (2005).
[CrossRef]

P. E. Powers, R. A. Alkuwari, J. W. Haus, K. Suizu, H. Ito, "Terahertz generation with tandem seeded optical parametric generators," Opt. Lett. 30, 640-642 (2005).
[CrossRef] [PubMed]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, "Surface-emitted terahertz-wave difference frequency generation in two-dimensional periodically poled lithium niobate," Opt. Lett. 30, 2927-2929 (2005).
[CrossRef] [PubMed]

2003 (2)

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003).
[CrossRef]

J. K. Wahlstrand and R. Merlin, "Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons," Phys. Rev. B 68, 054301 (2003).
[CrossRef]

2002 (4)

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002).
[CrossRef]

J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161-1166 (2002).
[PubMed]

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-197 (2002).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

2001 (1)

Y. Avetisyan, Y. Sasaki, and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).

1997 (1)

1994 (1)

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994).
[CrossRef]

1984 (2)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

D. A. Kleinman and D. H. Auston, "Theory of electro-optic shock radiation in nonlinear optical media," IEEE J. Quantum Electron. 20, 964-970 (1984).
[CrossRef]

1972 (1)

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, " Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

Akiba, T.

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, "Efficient Cherenkov-Type Phase-Matched Widely Tunable THz-Wave Generation via an Optimized Pump Beam Shape," Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

K. Suizu, T. Tutui, T. Shibuya, T. Akiba, and K. Kawase, "Cherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with lithium niobate crystal," Opt. Express 16, 7493-7498 (2008).
[CrossRef] [PubMed]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982 - L984 (2007).
[CrossRef]

Alexander, M.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994).
[CrossRef]

Alkuwari, R. A.

Almasi, G.

Auston, D. H.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

D. A. Kleinman and D. H. Auston, "Theory of electro-optic shock radiation in nonlinear optical media," IEEE J. Quantum Electron. 20, 964-970 (1984).
[CrossRef]

Avetisyan, Y.

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, "Surface-emitted terahertz-wave difference frequency generation in two-dimensional periodically poled lithium niobate," Opt. Lett. 30, 2927-2929 (2005).
[CrossRef] [PubMed]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

Y. Avetisyan, Y. Sasaki, and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).

Bakunov, M. I.

Bliss, D.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994).
[CrossRef]

Bodrov, S. B.

Boyd, G. D.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, " Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

Bridges, T. J.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, " Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

Buehler, E.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, " Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

Cheung, K. P.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

Ding, Y. J.

Edamatsu, K.

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982 - L984 (2007).
[CrossRef]

Fernelius, N.

Haus, J. W.

Hebling, J.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 ?J ultrashort THz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161-1166 (2002).
[PubMed]

Hoffmann, M. C.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 ?J ultrashort THz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

Imai, K.

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-197 (2002).
[CrossRef]

Ito, H.

H. Ito, K. Suizu, T. Yamashita, and T. Sato, "Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal," Jpn. J. Appl. Phys. 46, 7321-7324 (2007).
[CrossRef]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982 - L984 (2007).
[CrossRef]

Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41, 712-713 (2005).
[CrossRef]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, "Surface-emitted terahertz-wave difference frequency generation in two-dimensional periodically poled lithium niobate," Opt. Lett. 30, 2927-2929 (2005).
[CrossRef] [PubMed]

P. E. Powers, R. A. Alkuwari, J. W. Haus, K. Suizu, H. Ito, "Terahertz generation with tandem seeded optical parametric generators," Opt. Lett. 30, 640-642 (2005).
[CrossRef] [PubMed]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-197 (2002).
[CrossRef]

Y. Avetisyan, Y. Sasaki, and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).

Jin, Y.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994).
[CrossRef]

Jundt, D. H.

Kawase, K.

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, "Efficient Cherenkov-Type Phase-Matched Widely Tunable THz-Wave Generation via an Optimized Pump Beam Shape," Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

K. Suizu, T. Tutui, T. Shibuya, T. Akiba, and K. Kawase, "Cherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with lithium niobate crystal," Opt. Express 16, 7493-7498 (2008).
[CrossRef] [PubMed]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982 - L984 (2007).
[CrossRef]

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-197 (2002).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

Kimura, T.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003).
[CrossRef]

Kleinman, D. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

D. A. Kleinman and D. H. Auston, "Theory of electro-optic shock radiation in nonlinear optical media," IEEE J. Quantum Electron. 20, 964-970 (1984).
[CrossRef]

Kozma, I.

Kuhl, J.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161-1166 (2002).
[PubMed]

Larkin, J.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994).
[CrossRef]

Ma, X. F.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994).
[CrossRef]

Merlin, R.

J. K. Wahlstrand and R. Merlin, "Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons," Phys. Rev. B 68, 054301 (2003).
[CrossRef]

Minamide, H.

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-197 (2002).
[CrossRef]

Nagano, S.

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982 - L984 (2007).
[CrossRef]

Nelson, K. A.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 ?J ultrashort THz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

Nishizawa, J.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003).
[CrossRef]

Palfalvi, L.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Patel, C. K. N.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, " Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

Peter, A.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Polgar, K.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Powers, P. E.

Rice, A.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994).
[CrossRef]

Saito, K.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003).
[CrossRef]

Sasaki, Y.

Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41, 712-713 (2005).
[CrossRef]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, "Surface-emitted terahertz-wave difference frequency generation in two-dimensional periodically poled lithium niobate," Opt. Lett. 30, 2927-2929 (2005).
[CrossRef] [PubMed]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

Y. Avetisyan, Y. Sasaki, and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).

Sato, T.

H. Ito, K. Suizu, T. Yamashita, and T. Sato, "Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal," Jpn. J. Appl. Phys. 46, 7321-7324 (2007).
[CrossRef]

Shi, W.

Shibuya, T.

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, "Efficient Cherenkov-Type Phase-Matched Widely Tunable THz-Wave Generation via an Optimized Pump Beam Shape," Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

K. Suizu, T. Tutui, T. Shibuya, T. Akiba, and K. Kawase, "Cherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with lithium niobate crystal," Opt. Express 16, 7493-7498 (2008).
[CrossRef] [PubMed]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982 - L984 (2007).
[CrossRef]

Shikata, J.

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-197 (2002).
[CrossRef]

Shishkin, B. V.

Stepanov, A. N.

Suizu, K.

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, "Efficient Cherenkov-Type Phase-Matched Widely Tunable THz-Wave Generation via an Optimized Pump Beam Shape," Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

K. Suizu, T. Tutui, T. Shibuya, T. Akiba, and K. Kawase, "Cherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with lithium niobate crystal," Opt. Express 16, 7493-7498 (2008).
[CrossRef] [PubMed]

H. Ito, K. Suizu, T. Yamashita, and T. Sato, "Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal," Jpn. J. Appl. Phys. 46, 7321-7324 (2007).
[CrossRef]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982 - L984 (2007).
[CrossRef]

P. E. Powers, R. A. Alkuwari, J. W. Haus, K. Suizu, H. Ito, "Terahertz generation with tandem seeded optical parametric generators," Opt. Lett. 30, 640-642 (2005).
[CrossRef] [PubMed]

Suto, K.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003).
[CrossRef]

Tanabe, T.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003).
[CrossRef]

Tsutsui, T.

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, "Efficient Cherenkov-Type Phase-Matched Widely Tunable THz-Wave Generation via an Optimized Pump Beam Shape," Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

Tutui, T.

Valdmanis, J. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

Vodopyanov, K.

Wahlstrand, J. K.

J. K. Wahlstrand and R. Merlin, "Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons," Phys. Rev. B 68, 054301 (2003).
[CrossRef]

Yamashita, T.

H. Ito, K. Suizu, T. Yamashita, and T. Sato, "Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal," Jpn. J. Appl. Phys. 46, 7321-7324 (2007).
[CrossRef]

Yeh, K.-L.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 ?J ultrashort THz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

Yokoyama, H.

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, "Surface-emitted terahertz-wave difference frequency generation in two-dimensional periodically poled lithium niobate," Opt. Lett. 30, 2927-2929 (2005).
[CrossRef] [PubMed]

Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41, 712-713 (2005).
[CrossRef]

Zhang, X. C.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994).
[CrossRef]

Appl. Phys. B (1)

Y. Avetisyan, Y. Sasaki, and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).

Appl. Phys. Express (1)

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, "Efficient Cherenkov-Type Phase-Matched Widely Tunable THz-Wave Generation via an Optimized Pump Beam Shape," Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable terahertz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003).
[CrossRef]

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-197 (2002).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, " Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2," Appl. Phys. Lett. 21, 553-555 (1972).
[CrossRef]

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1994).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 ?J ultrashort THz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

Electron. Lett. (1)

Y. Sasaki, H. Yokoyama, and H. Ito, "Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate," Electron. Lett. 41, 712-713 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. A. Kleinman and D. H. Auston, "Theory of electro-optic shock radiation in nonlinear optical media," IEEE J. Quantum Electron. 20, 964-970 (1984).
[CrossRef]

J. Appl. Phys. (1)

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (2)

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, "Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate," Jpn. J. Appl. Phys. 46, L982 - L984 (2007).
[CrossRef]

H. Ito, K. Suizu, T. Yamashita, and T. Sato, "Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal," Jpn. J. Appl. Phys. 46, 7321-7324 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. B (1)

J. K. Wahlstrand and R. Merlin, "Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons," Phys. Rev. B 68, 054301 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

Other (2)

H. Ito and T. Ikari et al. recently clarified that a pulse energy of about 101 pJ/pulse corresponded to a Si-bolometer voltage output of 1 V. We adopted the novel calibration data.

R. L. Sutherland, Handbook of Nonlinear Optics, (Marcel Dekker, New York (2003), Chap. 2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Normalized electric field distribution of (a) combined dual wavelength pump beams with finite angle, and (b) exited second order nonlinear polarization of difference frequency. Here, λ1=1300 nm, λ2=1317 nm and 3 THz of difference frequency with 3.7 degrees of beam angle. (c) Geometric relation of A: excited nonlinear polarization for x-direction, B: interference period of pump beams for y-direction and C: THz-wavelength in the crystal.

Fig. 2.
Fig. 2.

Tuning angle (a) internal and (b) external of crystal under 1300, 1400 and 1500 nm of pumping wavelength of λ1.

Fig. 3.
Fig. 3.

Schematic of experimental setup for Cherenkov phase matching THz-wave generation with surfing configuration.

Fig. 4.
Fig. 4.

Input-output property of THz-wave for pumping energy at 1.0 THz generation with α=2.49 degrees. Circles and triangles denotes THz-wave output signal with combined beams and with single beam. Inset shows double logarithmic plot of input-output properties.

Fig. 5.
Fig. 5.

Calculated intensity of overlapping in-phase THz-waves in an absorptive media.

Fig. 6.
Fig. 6.

THz-wave output spectra under fixed pumping wavelength of 1300 nm and several fixed angle, 2.49, 3.80 and 5.03 degrees.

Fig. 7.
Fig. 7.

Calculated nonlinear polarization distributions at (a) 1.8 and (b) 2.6 THz generation with α=2.49.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ A = 2 π ( k 1 k 2 ) cos α 2 B = 2 π ( k 1 + k 2 ) sin α 2
α = 2 arccos ( ( k 1 + k 2 ) 2 + 16 π 2 ( λ THz / n THz ) 2 4 ( k 1 k 2 ) 2 ( k 1 + k 2 ) 2 )

Metrics