Abstract

We propose a slot-waveguide with high dispersion, in which a slot waveguide is coupled to a strip waveguide. A negative dispersion of up to -181520 ps/nm/km is obtained due to a strong interaction of the slot and strip modes. A flat and large dispersion is achievable by cascading the dispersive slot-waveguides with varied waveguide thickness or width for dispersion compensation and signal processing applications. We show -31300 ps/nm/km dispersion over 147-nm bandwidth with < 1 % variance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap and M. de Lacerda Rocha, "On the group delay characteristics of chirped fibre Bragg gratings," Opt. Commun. 153, 19-22 (1998).
    [CrossRef]
  2. L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
    [CrossRef]
  3. L. Zhang and C. Yang, "Improving the performance of fiber gratings with sinusoidal chirps," Appl. Opt. 42, 2181-2187 (2003).
    [CrossRef] [PubMed]
  4. K. Takiguchi, H. Takahashi, and T. Shibata, "Tunable chromatic dispersion and dispersion slope compensator using a planar lightwave circuit lattice-form filter," Opt. Lett. 33, 1243-1245 (2008).
    [CrossRef] [PubMed]
  5. A. S. Bhushan, F. Coppinger, and B. Jalali, "Time-stretched analogue-to-digital conversion," Electron. Lett. 34, 1081-1083 (1998).
    [CrossRef]
  6. Y. Wang, C. Yu, L. -S. Yan, A. E. Willner, R. Roussev, C. Langrock, and M. M. Fejer, "Continuously-tunable dispersionless 44-ns all optical delay element using a two-pump PPLN, DCF, and a dispersion compensator, " in Proc. ECOC (Europe Conference on Optical Communication) 2005, Glasgow, Scotland, paper Th1.3.3.
  7. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-7872.
    [CrossRef] [PubMed]
  8. D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, "A simplified optical correlator and its application to packet-header recognition," IEEE Photon. Technol. Lett. 20, 487-489 (2008).
    [CrossRef]
  9. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Capuzzo, L. T. Gomez, T. N. Nielsen, and I. Brener, "Multistage dispersion compensator using ring resonators," Opt. Lett. 24, 1555-1557 (1999).
    [CrossRef]
  10. L. Zhang, M. Song, J.-Y. Yang, R. G. Beausoleil and A. E. Willner, "A compact chromatic dispersion compensator using unequal and mutually-coupled microring resonators," in Proc. Integrated Photonics and Nanophotonics Research and Applications (IPNRA) 2008, (OSA, Boston, MA, USA), paper IWA3.
  11. E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-9-3853.
    [CrossRef] [PubMed]
  12. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4357.
    [CrossRef] [PubMed]
  13. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, "Chip-scale dispersion engineering using chirped vertical gratings," Opt. Lett. 33, 3013-3015 (2008)
    [CrossRef] [PubMed]
  14. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  15. S. H. Yang, M. L. Cooper, P. R. Bandaru, and S. Mookherjea, "Giant birefringence in multi-slotted silicon nanophotonic waveguides," Opt. Express 16, 8306-8316 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8306.
    [CrossRef] [PubMed]
  16. T. Fujisawa and M. Koshiba, "Guided modes of nonlinear slot waveguides," IEEE Photon. Technol. Lett. 18, 1530-1532 (2006).
    [CrossRef]
  17. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, "Optical modulation and detection in slotted Silicon waveguides," Opt. Express 13, 5216-5226 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5216.
    [CrossRef] [PubMed]
  18. Z. Zheng, M. Iqbal, and J. Liu, "Dispersion characteristics of SOI-based slot optical waveguides," Opt. Commun. 281, 5151-5155 (2008).
    [CrossRef]
  19. U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
    [CrossRef]
  20. H. Subbaraman, T. Ling, Y. Jiang, M. Y. Chen, P. Cao, and R. T. Chen, "Design of a broadband highly dispersive pure silica photonic crystal fiber," Appl. Opt. 46, 3263-3268 (2007)
    [CrossRef] [PubMed]
  21. R. Sun, P. Dong, N.-N Feng, C.-Y Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal single and multiple slot waveguides: optical transmission at ? = 1550 nm," Opt. Express 15, 17967-17972 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17967.
    [CrossRef] [PubMed]
  22. A. Yariv and X. Sun, "Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis," Opt. Express 15, 9147-9151 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9147.
    [CrossRef] [PubMed]
  23. H. Rong, Y.-H. Kuo, S. Xu, O. Cohen, O. Raday, and M. Paniccia, "Recent development on silicon-based Raman lasers and amplifiers," Proc. SPIE 6389, 638904-1-9 (2006).

2008 (5)

2007 (3)

2006 (3)

2005 (2)

2004 (1)

2003 (1)

2000 (1)

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

1999 (1)

1998 (2)

R. Kashyap and M. de Lacerda Rocha, "On the group delay characteristics of chirped fibre Bragg gratings," Opt. Commun. 153, 19-22 (1998).
[CrossRef]

A. S. Bhushan, F. Coppinger, and B. Jalali, "Time-stretched analogue-to-digital conversion," Electron. Lett. 34, 1081-1083 (1998).
[CrossRef]

1995 (1)

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Agogliati, B.

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

Almeida, V. R.

Arcangeli, L.

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

Baehr-Jones, T.

Bandaru, P. R.

Barrios, C. A.

Bhushan, A. S.

A. S. Bhushan, F. Coppinger, and B. Jalali, "Time-stretched analogue-to-digital conversion," Electron. Lett. 34, 1081-1083 (1998).
[CrossRef]

Brener, I.

Bruce, A. J.

Cao, P.

Capuzzo, M. A.

Chen, M. Y.

Chen, R. T.

Cooper, M. L.

Coppinger, F.

A. S. Bhushan, F. Coppinger, and B. Jalali, "Time-stretched analogue-to-digital conversion," Electron. Lett. 34, 1081-1083 (1998).
[CrossRef]

Dalton, L.

de Lacerda Rocha, M.

R. Kashyap and M. de Lacerda Rocha, "On the group delay characteristics of chirped fibre Bragg gratings," Opt. Commun. 153, 19-22 (1998).
[CrossRef]

Di Maio, G.

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

Dong, P.

Dulkeith, E.

Fainman, Y.

Feng, N.-N

Forghieri, F.

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

Foster, M. A.

Fujisawa, T.

T. Fujisawa and M. Koshiba, "Guided modes of nonlinear slot waveguides," IEEE Photon. Technol. Lett. 18, 1530-1532 (2006).
[CrossRef]

Gaeta, A. L.

Garrett, L. D.

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

Geraghty, D. F.

D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, "A simplified optical correlator and its application to packet-header recognition," IEEE Photon. Technol. Lett. 20, 487-489 (2008).
[CrossRef]

Gnauck, A. H.

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

Gomez, L. T.

Green, W. M. J.

Gusmeroli, V.

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

Hochberg, M.

Hong, C.-Y

Ikeda, K.

Iqbal, M.

Z. Zheng, M. Iqbal, and J. Liu, "Dispersion characteristics of SOI-based slot optical waveguides," Opt. Commun. 281, 5151-5155 (2008).
[CrossRef]

Jalali, B.

A. S. Bhushan, F. Coppinger, and B. Jalali, "Time-stretched analogue-to-digital conversion," Electron. Lett. 34, 1081-1083 (1998).
[CrossRef]

Jen, A. K. Y.

Jiang, Y.

Kashyap, R.

R. Kashyap and M. de Lacerda Rocha, "On the group delay characteristics of chirped fibre Bragg gratings," Opt. Commun. 153, 19-22 (1998).
[CrossRef]

Kimerling, L.

Koshiba, M.

T. Fujisawa and M. Koshiba, "Guided modes of nonlinear slot waveguides," IEEE Photon. Technol. Lett. 18, 1530-1532 (2006).
[CrossRef]

Lawson, R.

Lederer, F.

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Lenz, G.

Liao, Y.

Ling, T.

Lipson, M.

Liu, J.

Z. Zheng, M. Iqbal, and J. Liu, "Dispersion characteristics of SOI-based slot optical waveguides," Opt. Commun. 281, 5151-5155 (2008).
[CrossRef]

Madsen, C. K.

Manolatou, C.

Michel, J.

Mookherjea, S.

Nielsen, T. N.

Okawachi, Y.

Peschel, T.

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Peschel, U.

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Salem, R.

D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, "A simplified optical correlator and its application to packet-header recognition," IEEE Photon. Technol. Lett. 20, 487-489 (2008).
[CrossRef]

Saperstein, R. E.

Scarano, D.

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

Schares, L.

Scherer, A.

Schmidt, B. S.

Sharping, J. E.

Shibata, T.

Slutsky, B.

Subbaraman, H.

Sullivan, P. A.

Sun, R.

Sun, X.

Takahashi, H.

Takiguchi, K.

Tan, D. T. H.

Tkach, R. W.

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

Tosetti, C.

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

Turner, A. C.

van Howe, J.

Vlasov, Y. A.

Wang, G.

Wang, Y.

Willner, A. E.

Xia, F. N.

Xu, C.

Xu, Q. F.

Yang, C.

Yang, S. H.

Yariv, A.

Zhang, L.

Zheng, Z.

Z. Zheng, M. Iqbal, and J. Liu, "Dispersion characteristics of SOI-based slot optical waveguides," Opt. Commun. 281, 5151-5155 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Electron. Lett. (1)

A. S. Bhushan, F. Coppinger, and B. Jalali, "Time-stretched analogue-to-digital conversion," Electron. Lett. 34, 1081-1083 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. D. Garrett, A. H. Gnauck, R. W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio, and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm-bandwidth dispersion compensation," IEEE Photon. Technol. Lett. 12, 356-358 (2000).
[CrossRef]

D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, "A simplified optical correlator and its application to packet-header recognition," IEEE Photon. Technol. Lett. 20, 487-489 (2008).
[CrossRef]

T. Fujisawa and M. Koshiba, "Guided modes of nonlinear slot waveguides," IEEE Photon. Technol. Lett. 18, 1530-1532 (2006).
[CrossRef]

Opt. Commun. (2)

Z. Zheng, M. Iqbal, and J. Liu, "Dispersion characteristics of SOI-based slot optical waveguides," Opt. Commun. 281, 5151-5155 (2008).
[CrossRef]

R. Kashyap and M. de Lacerda Rocha, "On the group delay characteristics of chirped fibre Bragg gratings," Opt. Commun. 153, 19-22 (1998).
[CrossRef]

Opt. Express (7)

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, "Optical modulation and detection in slotted Silicon waveguides," Opt. Express 13, 5216-5226 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5216.
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-7872.
[CrossRef] [PubMed]

E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-9-3853.
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4357.
[CrossRef] [PubMed]

A. Yariv and X. Sun, "Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis," Opt. Express 15, 9147-9151 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9147.
[CrossRef] [PubMed]

R. Sun, P. Dong, N.-N Feng, C.-Y Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal single and multiple slot waveguides: optical transmission at ? = 1550 nm," Opt. Express 15, 17967-17972 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17967.
[CrossRef] [PubMed]

S. H. Yang, M. L. Cooper, P. R. Bandaru, and S. Mookherjea, "Giant birefringence in multi-slotted silicon nanophotonic waveguides," Opt. Express 16, 8306-8316 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8306.
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (3)

H. Rong, Y.-H. Kuo, S. Xu, O. Cohen, O. Raday, and M. Paniccia, "Recent development on silicon-based Raman lasers and amplifiers," Proc. SPIE 6389, 638904-1-9 (2006).

Y. Wang, C. Yu, L. -S. Yan, A. E. Willner, R. Roussev, C. Langrock, and M. M. Fejer, "Continuously-tunable dispersionless 44-ns all optical delay element using a two-pump PPLN, DCF, and a dispersion compensator, " in Proc. ECOC (Europe Conference on Optical Communication) 2005, Glasgow, Scotland, paper Th1.3.3.

L. Zhang, M. Song, J.-Y. Yang, R. G. Beausoleil and A. E. Willner, "A compact chromatic dispersion compensator using unequal and mutually-coupled microring resonators," in Proc. Integrated Photonics and Nanophotonics Research and Applications (IPNRA) 2008, (OSA, Boston, MA, USA), paper IWA3.

Supplementary Material (1)

» Media 1: AVI (557 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Slot and strip modes strongly interact with each other due to index-matching at the crossing point, producing a sharp index change of symmetric and anti-symmetric modes. Modal power distributions of the symmetric mode at different wavelengths (Media 1).

Fig. 2.
Fig. 2.

(a). Dispersion profiles of the symmetric and anti-symmetric modes, and a negative dispersion of -181520 ps/nm/km can be obtained from the symmetric mode. (b). The dispersion profile red-shifts with a small peak value as the slot thickness increases.

Fig. 3.
Fig. 3.

Dispersion value and peak wavelength are examined as functions of the slot thickness (a) and the silicon-layer thickness (b), respectively.

Fig. 4.
Fig. 4.

(a) The dispersion profile is fixed at the same wavelength as the dispersion’s peak value is changed from -181520 to -28473 ps/nm/km by varying the silica base thickness. (b) A trade-off is found between the dispersion peak value and dispersion bandwidth.

Fig. 5.
Fig. 5.

(a) Dispersion shifts with different slot thicknesses, exhibiting almost unchanged dispersion value and bandwidth. (b) Dispersion properties change with the waveguide width.

Fig. 6.
Fig. 6.

Dispersion compensation for very high-speed signals transmitted over 11.4-km single mode fiber. Eye-opening penalty increases with bit rate. Eye-diagrams are in the same scale.

Fig. 7
Fig. 7

(a) Waveguides with variable waveguide thickness or width are cascaded. (b). The dispersion shifts over wavelength by changing WT. (c). Flat dispersion of -31300 ps/nm/km over 147 nm. 6.3 ns/m tunable delay can be obtained by 230-nm wavelength conversion.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ D 1 ( λ 1 ) D 2 ( λ 1 ) D n ( λ 1 ) D 1 ( λ 1 ) D 2 ( λ 2 ) D n ( λ 2 ) D 1 ( λ n ) D 2 ( λ n ) D n ( λ n ) ] · [ c 1 c 2 c n ] = [ D 0 D 0 D 0 ]

Metrics