Abstract

This work demonstrates the feasibility of a polarizer-free, electrically switchable and optically rewritable display based on dye-doped polymer-dispersed liquid crystals (DD-PDLCs). Experimental results indicate that the doped dyes are homeotropically adsorbed onto the polymer film when an appropriate AC voltage is applied during patterning. The adsorbed dyes in the illuminated region then align the liquid crystals homeotropically, and produce a transparent pattern in the scattering background without any polarizer. Notably, the adsorbed dyes can be erased and readsorbed using thermal and optical treatments, respectively. The switching time of the fabricated display is of the order of milliseconds, and the contrast ratio is ~ 30.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Statman, E. Page, V. Werner, and J. C. Lombardi, “Photoinduced reorientation of nematic liquid crystals doped with an azo dye: A dynamic and steady-state study of reorientation and loss of liquid crystal order,” Phys. Rev. E 75, 021703 (2007).
    [CrossRef]
  2. C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
    [CrossRef]
  3. O. Francescangeli, S. Slussarenko, and F. Simoni, “Light-induced surface sliding of the nematic director in liquid crystals,” Phys. Rev. Lett. 82, 1855–1858 (1999).
    [CrossRef]
  4. K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15, 14078–14085 (2007).
    [CrossRef] [PubMed]
  5. T.-H. Lin, Y. Huang, Y. Zhou, A. Y.-G. Fuh, and S.-T. Wu, “Photo-patterning micro-mirror devices using azo dye-doped cholesteric liquid crystals,” Opt. Express 14, 4479–4485 (2006).
    [CrossRef] [PubMed]
  6. A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
    [CrossRef]
  7. A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).
    [CrossRef]
  8. A. Y.-G. Fuh and T.-S. Mo, ”Holographic grating based on dye-doped Surface-Stabilized Ferroelectric liquid crystal films,” Jpn. J. Appl. Phys. 41, 2122–2127 (2002).
    [CrossRef]
  9. D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
    [CrossRef]
  10. F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549–551 (1997).
    [CrossRef] [PubMed]
  11. F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439–R487 (1999).
    [CrossRef]
  12. D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: Experiment and model,” Phys. Rev. E 73, 031701 (2006).
    [CrossRef]
  13. C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
    [CrossRef]
  14. G. H. Heilmeier and L. A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
    [CrossRef]
  15. J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
    [CrossRef]
  16. R. Yamaguchi and S. Sato, “Memory effects of light transmission properties in polymer-dispersed liquid-crystal (PDLC) films,” Jpn. J. Appl. Phys. 30, L616–L618 (1991).
    [CrossRef]
  17. T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E 61, 4007–4010 (2000).
    [CrossRef]
  18. Q. Wang, Jung O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44, 3115–3120 (2005).
    [CrossRef]
  19. S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
    [CrossRef]

2007 (2)

D. Statman, E. Page, V. Werner, and J. C. Lombardi, “Photoinduced reorientation of nematic liquid crystals doped with an azo dye: A dynamic and steady-state study of reorientation and loss of liquid crystal order,” Phys. Rev. E 75, 021703 (2007).
[CrossRef]

K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15, 14078–14085 (2007).
[CrossRef] [PubMed]

2006 (2)

T.-H. Lin, Y. Huang, Y. Zhou, A. Y.-G. Fuh, and S.-T. Wu, “Photo-patterning micro-mirror devices using azo dye-doped cholesteric liquid crystals,” Opt. Express 14, 4479–4485 (2006).
[CrossRef] [PubMed]

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: Experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

2005 (1)

Q. Wang, Jung O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44, 3115–3120 (2005).
[CrossRef]

2004 (1)

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

2003 (2)

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).
[CrossRef]

2002 (1)

A. Y.-G. Fuh and T.-S. Mo, ”Holographic grating based on dye-doped Surface-Stabilized Ferroelectric liquid crystal films,” Jpn. J. Appl. Phys. 41, 2122–2127 (2002).
[CrossRef]

2000 (2)

S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
[CrossRef]

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E 61, 4007–4010 (2000).
[CrossRef]

1999 (3)

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439–R487 (1999).
[CrossRef]

O. Francescangeli, S. Slussarenko, and F. Simoni, “Light-induced surface sliding of the nematic director in liquid crystals,” Phys. Rev. Lett. 82, 1855–1858 (1999).
[CrossRef]

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

1997 (1)

1995 (1)

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[CrossRef]

1991 (1)

R. Yamaguchi and S. Sato, “Memory effects of light transmission properties in polymer-dispersed liquid-crystal (PDLC) films,” Jpn. J. Appl. Phys. 30, L616–L618 (1991).
[CrossRef]

1986 (1)

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

1968 (1)

G. H. Heilmeier and L. A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

Cheng, K.-T.

K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15, 14078–14085 (2007).
[CrossRef] [PubMed]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).
[CrossRef]

Chien, L.-C.

S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
[CrossRef]

Doane, J. W.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Fedorenko, D.

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: Experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

Francescangeli, O.

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439–R487 (1999).
[CrossRef]

O. Francescangeli, S. Slussarenko, and F. Simoni, “Light-induced surface sliding of the nematic director in liquid crystals,” Phys. Rev. Lett. 82, 1855–1858 (1999).
[CrossRef]

F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549–551 (1997).
[CrossRef] [PubMed]

Fu, T.-L.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

Fuh, A. Y.-G.

K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15, 14078–14085 (2007).
[CrossRef] [PubMed]

T.-H. Lin, Y. Huang, Y. Zhou, A. Y.-G. Fuh, and S.-T. Wu, “Photo-patterning micro-mirror devices using azo dye-doped cholesteric liquid crystals,” Opt. Express 14, 4479–4485 (2006).
[CrossRef] [PubMed]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).
[CrossRef]

A. Y.-G. Fuh and T.-S. Mo, ”Holographic grating based on dye-doped Surface-Stabilized Ferroelectric liquid crystal films,” Jpn. J. Appl. Phys. 41, 2122–2127 (2002).
[CrossRef]

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

Fuh, Andy Y.-G.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

Heilmeier, G. H.

G. H. Heilmeier and L. A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

Huang, L.-J.

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

Huang, Y.

Kang, S.-W.

S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
[CrossRef]

Khizhnyak, A.

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[CrossRef]

Kim, J.-H.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E 61, 4007–4010 (2000).
[CrossRef]

Kumar, S.

Q. Wang, Jung O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44, 3115–3120 (2005).
[CrossRef]

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E 61, 4007–4010 (2000).
[CrossRef]

Lee, C.-R.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

Lin, T.-H.

Liu, C.-K.

Liu, T.-C.

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

Lombardi, J. C.

D. Statman, E. Page, V. Werner, and J. C. Lombardi, “Photoinduced reorientation of nematic liquid crystals doped with an azo dye: A dynamic and steady-state study of reorientation and loss of liquid crystal order,” Phys. Rev. E 75, 021703 (2007).
[CrossRef]

Mo, T.-S.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

A. Y.-G. Fuh and T.-S. Mo, ”Holographic grating based on dye-doped Surface-Stabilized Ferroelectric liquid crystal films,” Jpn. J. Appl. Phys. 41, 2122–2127 (2002).
[CrossRef]

Ouskova, E.

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: Experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

Page, E.

D. Statman, E. Page, V. Werner, and J. C. Lombardi, “Photoinduced reorientation of nematic liquid crystals doped with an azo dye: A dynamic and steady-state study of reorientation and loss of liquid crystal order,” Phys. Rev. E 75, 021703 (2007).
[CrossRef]

Park, Jung O.

Q. Wang, Jung O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44, 3115–3120 (2005).
[CrossRef]

Qian, T.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E 61, 4007–4010 (2000).
[CrossRef]

Qiu, L.

Q. Wang, Jung O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44, 3115–3120 (2005).
[CrossRef]

Reshetnyak, V.

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: Experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[CrossRef]

Reznikov, Y.

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: Experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549–551 (1997).
[CrossRef] [PubMed]

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[CrossRef]

Sato, S.

R. Yamaguchi and S. Sato, “Memory effects of light transmission properties in polymer-dispersed liquid-crystal (PDLC) films,” Jpn. J. Appl. Phys. 30, L616–L618 (1991).
[CrossRef]

Simoni, F.

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439–R487 (1999).
[CrossRef]

O. Francescangeli, S. Slussarenko, and F. Simoni, “Light-induced surface sliding of the nematic director in liquid crystals,” Phys. Rev. Lett. 82, 1855–1858 (1999).
[CrossRef]

F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549–551 (1997).
[CrossRef] [PubMed]

Slussarenko, S.

O. Francescangeli, S. Slussarenko, and F. Simoni, “Light-induced surface sliding of the nematic director in liquid crystals,” Phys. Rev. Lett. 82, 1855–1858 (1999).
[CrossRef]

F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549–551 (1997).
[CrossRef] [PubMed]

Sprunt, S.

S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
[CrossRef]

Srinivasarao, M.

Q. Wang, Jung O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44, 3115–3120 (2005).
[CrossRef]

Statman, D.

D. Statman, E. Page, V. Werner, and J. C. Lombardi, “Photoinduced reorientation of nematic liquid crystals doped with an azo dye: A dynamic and steady-state study of reorientation and loss of liquid crystal order,” Phys. Rev. E 75, 021703 (2007).
[CrossRef]

Taylor, P. L.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E 61, 4007–4010 (2000).
[CrossRef]

Ting, C.-L.

Tsai, M.-S.

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

Vaz, N. A.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Voloschenko, D.

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[CrossRef]

Wang, Q.

Q. Wang, Jung O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44, 3115–3120 (2005).
[CrossRef]

Werner, V.

D. Statman, E. Page, V. Werner, and J. C. Lombardi, “Photoinduced reorientation of nematic liquid crystals doped with an azo dye: A dynamic and steady-state study of reorientation and loss of liquid crystal order,” Phys. Rev. E 75, 021703 (2007).
[CrossRef]

Wu, B.-G.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Wu, S.-T.

Yamaguchi, R.

R. Yamaguchi and S. Sato, “Memory effects of light transmission properties in polymer-dispersed liquid-crystal (PDLC) films,” Jpn. J. Appl. Phys. 30, L616–L618 (1991).
[CrossRef]

Zanoni, L. A.

G. H. Heilmeier and L. A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

Zhou, Y.

Zumer, S.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Appl. Phys. Lett. (5)

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285–4287 (2003).
[CrossRef]

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

G. H. Heilmeier and L. A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electro-optic effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000).
[CrossRef]

J. Phys. Condens. Matter (1)

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439–R487 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (5)

Q. Wang, Jung O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase-separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44, 3115–3120 (2005).
[CrossRef]

R. Yamaguchi and S. Sato, “Memory effects of light transmission properties in polymer-dispersed liquid-crystal (PDLC) films,” Jpn. J. Appl. Phys. 30, L616–L618 (1991).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).
[CrossRef]

A. Y.-G. Fuh and T.-S. Mo, ”Holographic grating based on dye-doped Surface-Stabilized Ferroelectric liquid crystal films,” Jpn. J. Appl. Phys. 41, 2122–2127 (2002).
[CrossRef]

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566–571 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. E (4)

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E 61, 4007–4010 (2000).
[CrossRef]

D. Statman, E. Page, V. Werner, and J. C. Lombardi, “Photoinduced reorientation of nematic liquid crystals doped with an azo dye: A dynamic and steady-state study of reorientation and loss of liquid crystal order,” Phys. Rev. E 75, 021703 (2007).
[CrossRef]

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: Experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

O. Francescangeli, S. Slussarenko, and F. Simoni, “Light-induced surface sliding of the nematic director in liquid crystals,” Phys. Rev. Lett. 82, 1855–1858 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setups (a) for curing sample under UV; (b) for measuring the transmittance of the cured sample with or without the application of an AC voltage; (c) for patterning a DD-PDLC sample. P, BE and AP represent polarizer, beam expander and aperture, respectively. The mask in (c) is a home-made transparent mask of the two letters, “LC”.

Fig. 2.
Fig. 2.

Images of (a) reference surface, SR, and (b) command surface, SC, of cell after UV-curing (intensity ~ 0.14 W/cm2) for 50 minutes on a piece of printed paper. Top-view SEM images of (c) DMOAP-coated SR, and (d) polymer film formed on SC.

Fig. 3.
Fig. 3.

Experimental results; (a) measured transmittance of UV-cured sample as function of UV curing duration; (b) transmittance versus voltage curve of cured sample; (c) variation of transmittance of cured sample with duration of illumination with green light; (d) transmittances of patterned region versus polarization direction of probe light.

Fig. 4.
Fig. 4.

Photographs of DD-PDLC sample taken using a digital camera (a) before and (b) after the sample had been illuminated with a green laser beam through a mask of the two letters “LC”; (c) and (d) photographs of sample after it had been thermally erased and optically rewritten, respectively.

Fig. 5.
Fig. 5.

Recorded pattern, “LC”, on DD-PDLC film with applied AC voltage (1 KHz) of (a) 0 V and (b) 100 V. The pattern returns to (a) when the applied voltage is switched off. The background is a piece of printed paper.

Metrics