Abstract

In this paper, the radiation of an omni-directional line source placed in a uniaxial metamaterial slab is experimentally presented. The anisotropic slab made of metallic symmetrical rings with dispersive permeability is investigated both theoretically and experimentally. For low value of the permeability, a directive radiation at the broadside of the slab can be obtained. Due to the excitation of the leaky wave mode supported by this structure, the emitted electromagnetic wave transmits at a greater angle from the normal of the slab as the value of permeability increases along with the frequency. Thus a rainbow-like radiation will be formed since waves of different frequencies will deflect into different directions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?" Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity" Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  3. J. B. Pendry, "Negative refraction makes a perfect lens" Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006)
    [CrossRef] [PubMed]
  5. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media" Opt. Express. 14, 9794-9804 (2006).
    [CrossRef] [PubMed]
  6. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures" Phys. Rev. E. 74, 036621-1-5 (2006).
    [CrossRef]
  7. R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction" Phys. Rev. E.  70, 046608-1-4 (2004)
    [CrossRef]
  8. F. L. Zhang, S. Potet, and J. Caobonell, "Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial" IEEE Trans. Microwave Theory Tech. 56, 2566-2573 (2008).
    [CrossRef]
  9. A. Alu, M. G. Silveirinha, and N. Engheta, "Transmission-line analysis of epsilon-near-zero-filled narrow channels" Phys. Rev. E.  78, 016604-1-4 (2008)
    [CrossRef]
  10. B. Edwards, A. Alu, M. E. Young, M. Silveirinha, N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide" Phys. Rev. Lett. 100, 033903-1-4 (2008).
    [CrossRef] [PubMed]
  11. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission" Phys. Rev. Lett. 89, 213902-1-4 (2002).
    [CrossRef] [PubMed]
  12. Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, and J. T. Huangfu, "Directive emission based on anisotropic metamaterials" Phys. Rev. A. 77, 053821-1-5 (2008).
    [CrossRef]
  13. B. I. Wu, W. Wang, J. Pacheco et al, "A study of using metamaterial as antenna substrate to enhance gain" Progress in Electromagnetics Research, PIER 51, 295-328 (2005).
    [CrossRef]
  14. G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of Directive Radiation From a Line Source in a Metamaterial Slab With Low Permittivity" IEEE Trans. Antennas Propag. 54, 1017-1030 (2006).
    [CrossRef]
  15. P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005).
    [CrossRef]
  16. N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A Metallic Fabry-Perot Directive Antenna" IEEE Trans. Antennas Propag. 54, 220-224 (2006).
    [CrossRef]
  17. P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive Leaky-Wave Radiation From a Dipole Source in a Wire-Medium Slab" IEEE Trans. Antennas Propag. 56, 1329-1339 (2008).
    [CrossRef]
  18. A. Alù, F. Bilotti, N. Engheta and L. Vegni, "Subwavelength Planar Leaky-Wave Components With Metamaterial Bilayers" IEEE Trans. Antennas Propag. 55, 882-891 (2007).
    [CrossRef]
  19. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena" IEEE. Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  20. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients" Phys. Rev. B. 65, 195104-1-4 (2002).
    [CrossRef]
  21. X. D. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials" Phys. Rev. E. 70, 016608-1-4 (2004).
    [CrossRef]

2008 (2)

F. L. Zhang, S. Potet, and J. Caobonell, "Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial" IEEE Trans. Microwave Theory Tech. 56, 2566-2573 (2008).
[CrossRef]

P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive Leaky-Wave Radiation From a Dipole Source in a Wire-Medium Slab" IEEE Trans. Antennas Propag. 56, 1329-1339 (2008).
[CrossRef]

2007 (1)

A. Alù, F. Bilotti, N. Engheta and L. Vegni, "Subwavelength Planar Leaky-Wave Components With Metamaterial Bilayers" IEEE Trans. Antennas Propag. 55, 882-891 (2007).
[CrossRef]

2006 (4)

N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A Metallic Fabry-Perot Directive Antenna" IEEE Trans. Antennas Propag. 54, 220-224 (2006).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of Directive Radiation From a Line Source in a Metamaterial Slab With Low Permittivity" IEEE Trans. Antennas Propag. 54, 1017-1030 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006)
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media" Opt. Express. 14, 9794-9804 (2006).
[CrossRef] [PubMed]

2005 (2)

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005).
[CrossRef]

B. I. Wu, W. Wang, J. Pacheco et al, "A study of using metamaterial as antenna substrate to enhance gain" Progress in Electromagnetics Research, PIER 51, 295-328 (2005).
[CrossRef]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity" Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens" Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena" IEEE. Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?" Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Alù, A.

A. Alù, F. Bilotti, N. Engheta and L. Vegni, "Subwavelength Planar Leaky-Wave Components With Metamaterial Bilayers" IEEE Trans. Antennas Propag. 55, 882-891 (2007).
[CrossRef]

Baccarelli, P.

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005).
[CrossRef]

Bilotti, F.

A. Alù, F. Bilotti, N. Engheta and L. Vegni, "Subwavelength Planar Leaky-Wave Components With Metamaterial Bilayers" IEEE Trans. Antennas Propag. 55, 882-891 (2007).
[CrossRef]

Burghignoli, P.

P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive Leaky-Wave Radiation From a Dipole Source in a Wire-Medium Slab" IEEE Trans. Antennas Propag. 56, 1329-1339 (2008).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of Directive Radiation From a Line Source in a Metamaterial Slab With Low Permittivity" IEEE Trans. Antennas Propag. 54, 1017-1030 (2006).
[CrossRef]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005).
[CrossRef]

Caobonell, J.

F. L. Zhang, S. Potet, and J. Caobonell, "Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial" IEEE Trans. Microwave Theory Tech. 56, 2566-2573 (2008).
[CrossRef]

Capolino, F.

P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive Leaky-Wave Radiation From a Dipole Source in a Wire-Medium Slab" IEEE Trans. Antennas Propag. 56, 1329-1339 (2008).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of Directive Radiation From a Line Source in a Metamaterial Slab With Low Permittivity" IEEE Trans. Antennas Propag. 54, 1017-1030 (2006).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006)
[CrossRef] [PubMed]

Engheta, N.

A. Alù, F. Bilotti, N. Engheta and L. Vegni, "Subwavelength Planar Leaky-Wave Components With Metamaterial Bilayers" IEEE Trans. Antennas Propag. 55, 882-891 (2007).
[CrossRef]

Enoch, S.

N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A Metallic Fabry-Perot Directive Antenna" IEEE Trans. Antennas Propag. 54, 220-224 (2006).
[CrossRef]

Frezza, F.

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005).
[CrossRef]

Galli, A.

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005).
[CrossRef]

Guérin, N.

N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A Metallic Fabry-Perot Directive Antenna" IEEE Trans. Antennas Propag. 54, 220-224 (2006).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena" IEEE. Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Jackson, D. R.

P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive Leaky-Wave Radiation From a Dipole Source in a Wire-Medium Slab" IEEE Trans. Antennas Propag. 56, 1329-1339 (2008).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of Directive Radiation From a Line Source in a Metamaterial Slab With Low Permittivity" IEEE Trans. Antennas Propag. 54, 1017-1030 (2006).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006)
[CrossRef] [PubMed]

Lampariello, P.

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005).
[CrossRef]

Legay, H.

N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A Metallic Fabry-Perot Directive Antenna" IEEE Trans. Antennas Propag. 54, 220-224 (2006).
[CrossRef]

Lovat, G.

P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive Leaky-Wave Radiation From a Dipole Source in a Wire-Medium Slab" IEEE Trans. Antennas Propag. 56, 1329-1339 (2008).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of Directive Radiation From a Line Source in a Metamaterial Slab With Low Permittivity" IEEE Trans. Antennas Propag. 54, 1017-1030 (2006).
[CrossRef]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006)
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity" Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Pacheco, J.

B. I. Wu, W. Wang, J. Pacheco et al, "A study of using metamaterial as antenna substrate to enhance gain" Progress in Electromagnetics Research, PIER 51, 295-328 (2005).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity" Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Paulotto, S.

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006)
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media" Opt. Express. 14, 9794-9804 (2006).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens" Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena" IEEE. Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Potet, S.

F. L. Zhang, S. Potet, and J. Caobonell, "Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial" IEEE Trans. Microwave Theory Tech. 56, 2566-2573 (2008).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena" IEEE. Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Sabouroux, P.

N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A Metallic Fabry-Perot Directive Antenna" IEEE Trans. Antennas Propag. 54, 220-224 (2006).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity" Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006)
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media" Opt. Express. 14, 9794-9804 (2006).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media" Opt. Express. 14, 9794-9804 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006)
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity" Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006)
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena" IEEE. Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Tayeb, G.

N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A Metallic Fabry-Perot Directive Antenna" IEEE Trans. Antennas Propag. 54, 220-224 (2006).
[CrossRef]

Vegni, L.

A. Alù, F. Bilotti, N. Engheta and L. Vegni, "Subwavelength Planar Leaky-Wave Components With Metamaterial Bilayers" IEEE Trans. Antennas Propag. 55, 882-891 (2007).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?" Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity" Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Vincent, P.

N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A Metallic Fabry-Perot Directive Antenna" IEEE Trans. Antennas Propag. 54, 220-224 (2006).
[CrossRef]

Wang, W.

B. I. Wu, W. Wang, J. Pacheco et al, "A study of using metamaterial as antenna substrate to enhance gain" Progress in Electromagnetics Research, PIER 51, 295-328 (2005).
[CrossRef]

Wilton, D. R.

P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive Leaky-Wave Radiation From a Dipole Source in a Wire-Medium Slab" IEEE Trans. Antennas Propag. 56, 1329-1339 (2008).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of Directive Radiation From a Line Source in a Metamaterial Slab With Low Permittivity" IEEE Trans. Antennas Propag. 54, 1017-1030 (2006).
[CrossRef]

Wu, B. I.

B. I. Wu, W. Wang, J. Pacheco et al, "A study of using metamaterial as antenna substrate to enhance gain" Progress in Electromagnetics Research, PIER 51, 295-328 (2005).
[CrossRef]

Zhang, F. L.

F. L. Zhang, S. Potet, and J. Caobonell, "Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial" IEEE Trans. Microwave Theory Tech. 56, 2566-2573 (2008).
[CrossRef]

IEEE Trans. Antennas Propag. (4)

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of Directive Radiation From a Line Source in a Metamaterial Slab With Low Permittivity" IEEE Trans. Antennas Propag. 54, 1017-1030 (2006).
[CrossRef]

N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A Metallic Fabry-Perot Directive Antenna" IEEE Trans. Antennas Propag. 54, 220-224 (2006).
[CrossRef]

P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive Leaky-Wave Radiation From a Dipole Source in a Wire-Medium Slab" IEEE Trans. Antennas Propag. 56, 1329-1339 (2008).
[CrossRef]

A. Alù, F. Bilotti, N. Engheta and L. Vegni, "Subwavelength Planar Leaky-Wave Components With Metamaterial Bilayers" IEEE Trans. Antennas Propag. 55, 882-891 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005).
[CrossRef]

F. L. Zhang, S. Potet, and J. Caobonell, "Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial" IEEE Trans. Microwave Theory Tech. 56, 2566-2573 (2008).
[CrossRef]

IEEE. Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena" IEEE. Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Opt. Express. (1)

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media" Opt. Express. 14, 9794-9804 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity" Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens" Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Progress in Electromagnetics Research, PIER (1)

B. I. Wu, W. Wang, J. Pacheco et al, "A study of using metamaterial as antenna substrate to enhance gain" Progress in Electromagnetics Research, PIER 51, 295-328 (2005).
[CrossRef]

Science. (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006)
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?" Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other (8)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients" Phys. Rev. B. 65, 195104-1-4 (2002).
[CrossRef]

X. D. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials" Phys. Rev. E. 70, 016608-1-4 (2004).
[CrossRef]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures" Phys. Rev. E. 74, 036621-1-5 (2006).
[CrossRef]

R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction" Phys. Rev. E.  70, 046608-1-4 (2004)
[CrossRef]

A. Alu, M. G. Silveirinha, and N. Engheta, "Transmission-line analysis of epsilon-near-zero-filled narrow channels" Phys. Rev. E.  78, 016604-1-4 (2008)
[CrossRef]

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide" Phys. Rev. Lett. 100, 033903-1-4 (2008).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission" Phys. Rev. Lett. 89, 213902-1-4 (2002).
[CrossRef] [PubMed]

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, and J. T. Huangfu, "Directive emission based on anisotropic metamaterials" Phys. Rev. A. 77, 053821-1-5 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration of a rainbow-like radiation from a line source placed in a metamaterial slab. The inset shows phase matching k surfaces of metamaterial and air with red and black line.

Fig. 2.
Fig. 2.

(a). Unit cell of the metamaterial sample. (b) The retrieved real and imaginary parts of the permeability μz .

Fig. 3.
Fig. 3.

(a). Simulation results of the near electric field distribution and far field radiation pattern from the metamaterial slab at the frequency of 10.6 GHz. (b) Simulation results of the near electric field distribution and far field radiation pattern from the metamaterial slab at the frequency of 11 GHz.

Fig. 4.
Fig. 4.

(a). The metamaterial slab and the monopole antenna used in the experiment. (b) The measured far field radiation pattern from 7 GHz to 13 GHz, the bottom-left inset shows the experimental setup. (c) Radiation patterns for four selected frequencies.

Metrics