Abstract

The free carrier absorption effect in silicon modulation is a detrimental behavior that can influence the crosstalk of interference-based optical switches. Based on the experimental analysis of a 2×2 p-i-n silicon switch, we give a conservative estimate of the crosstalk ability of Mach-Zehnder optical switches. Experimental result shows that, while using a 1475μm-long phase shifter, the loss penalty almost reaches 1.45dB/π, which deteriorates the most ideal crosstalk to just 30dB. The possible solutions to overcome this limitation are also discussed at the cost of the other device performance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
    [CrossRef] [PubMed]
  2. M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulating and switching challenges," Nanotechnology 15, S622-S627 (2004).
    [CrossRef]
  3. G. T. Reed, "Silicon optical modulators," Mater. Today, 40-50 (2005).
    [CrossRef]
  4. R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon." J. Quantum. Electron. QE-23,123-129 (1987).
    [CrossRef]
  5. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
    [CrossRef]
  6. T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
    [CrossRef] [PubMed]
  7. G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
    [CrossRef]
  8. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
    [CrossRef] [PubMed]
  9. Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).
    [CrossRef]
  10. L. Liao, D. S. Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3134 (2005).
    [CrossRef] [PubMed]
  11. A. Liu, L. Liu, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).
    [CrossRef] [PubMed]
  12. W. M. J. Green et al, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express 15, 17106-17113 (2007).
    [CrossRef] [PubMed]
  13. D. M. Morini, L. Vivien, J. M. Fedeli, E. Cassan, P. Lyan, and S. Laval, "Low loss and high speed optical modulator based on a lateral carrier depletion structure," Opt. Express 16, 334-339 (2008).
    [CrossRef]
  14. G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
    [CrossRef]

2008

2007

2005

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).
[CrossRef]

L. Liao, D. S. Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3134 (2005).
[CrossRef] [PubMed]

G. T. Reed, "Silicon optical modulators," Mater. Today, 40-50 (2005).
[CrossRef]

T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
[CrossRef] [PubMed]

2004

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef] [PubMed]

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulating and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

1998

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

1991

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

1987

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon." J. Quantum. Electron. QE-23,123-129 (1987).
[CrossRef]

Arakawa, Y.

T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
[CrossRef] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon." J. Quantum. Electron. QE-23,123-129 (1987).
[CrossRef]

Cassan, E.

Chen, Ray T.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).
[CrossRef]

Chen, X. N.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).
[CrossRef]

Chetrit, Y.

Chu, T.

T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
[CrossRef] [PubMed]

Ciftcioglu, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Fedeli, J. M.

Franck, T.

Goh, T.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Green, W. M. J.

Gu, L. L.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).
[CrossRef]

Halbout, J. M.

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

Hattori, K.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Himeno, A.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Hodge, D.

Ishida, S.

T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
[CrossRef] [PubMed]

Izhaky, N.

Jiang, W.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).
[CrossRef]

Jiang, Y. Q.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Keil, U. D.

Laval, S.

Liao, L.

L. Liao, D. S. Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3134 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Lipson, M.

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulating and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

Liu, A.

Liu, L.

Lyan, P.

May, P. G.

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

Morini, D. M.

Morse, M.

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Ohmori, Y.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Okuno, M.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Paniccia, M.

A. Liu, L. Liu, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Reed, G. T.

G. T. Reed, "Silicon optical modulators," Mater. Today, 40-50 (2005).
[CrossRef]

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef] [PubMed]

Rubin, D.

Rubio, D. S.

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon." J. Quantum. Electron. QE-23,123-129 (1987).
[CrossRef]

Treyz, G. V.

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

Vivien, L.

Yasu, M.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Appl. Phys. Lett.

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

J. Quantum. Electron.

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon." J. Quantum. Electron. QE-23,123-129 (1987).
[CrossRef]

Mater. Today

G. T. Reed, "Silicon optical modulators," Mater. Today, 40-50 (2005).
[CrossRef]

Nanotechnology

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulating and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

Nature

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Express.

T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Possible extinction ratio (ER) under the condition of unbalanced interference of two beams

Fig. 2.
Fig. 2.

(a) Comparison of the modulation efficiency of electrons and holes in FCD effect; and (b) loss penalty l dB/π for unit π phase shift under different injected concentrations @ 1.31μm and 1.55μm

Fig. 3.
Fig. 3.

Theoretical framework of an MZI-based switch and the parameters for optical field

Fig. 4.
Fig. 4.

The contour of the switching CT limits and the necessary length order of a π/2 phase shifter, correspondent to the cases 2–4 in Table. 2

Fig. 5.
Fig. 5.

Schematic views of the fabricated 2×2 MZ switch, the right of which is SEM photograph of the waveguide cross section

Fig. 6.
Fig. 6.

The estimated phase change and loss penalty against the injected current in the 2×2 switch

Fig. 7.
Fig. 7.

The measured transmission spectrum and the fitting curves by considering the FCD effect

Tables (2)

Tables Icon

Table.1. Extinction ratios of the reported MZ modulators

Tables Icon

Table 2. Comparison to the four typical operation styles of MZ modulation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ER = 20 log 10 [ ( 1 + r ) / ( 1 r ) ] ( dB )
Δ n = Δ n e + Δ n h = 8.8 × 10 22 Δ N 8.5 × 10 18 ( Δ P ) 0.8
Δ α ( / cm ) = Δ α e + Δ α h = 8.5 × 10 18 Δ N + 6.0 × 10 18 Δ P
l ( dB / π ) = 10 × log 10 [ exp ( Δ α ( / cm ) × L π ( μm ) ) ]
[ a A out exp ( i ψ A out ) a B out exp ( i ψ B out ) ] = 1 2 [ 1 j j 1 ] [ α A exp ( i φ A ) 0 0 α B exp ( i φ B ) ] [ a A in exp ( i ψ A in ) a B in exp ( i ψ B in ) ]

Metrics