Abstract

The free carrier absorption effect in silicon modulation is a detrimental behavior that can influence the crosstalk of interference-based optical switches. Based on the experimental analysis of a 2×2 p-i-n silicon switch, we give a conservative estimate of the crosstalk ability of Mach-Zehnder optical switches. Experimental result shows that, while using a 1475μm-long phase shifter, the loss penalty almost reaches 1.45dB/π, which deteriorates the most ideal crosstalk to just 30dB. The possible solutions to overcome this limitation are also discussed at the cost of the other device performance.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
    [CrossRef]
  2. M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulating and switching challenges," Nanotechnology 15, S622-S627 (2004).
    [CrossRef]
  3. G. T. Reed, "Silicon optical modulators," Mater. Today, 40-50 (2005).
    [CrossRef]
  4. R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon." J. Quantum. Electron. QE-23,123-129 (1987).
    [CrossRef]
  5. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
    [CrossRef]
  6. T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
    [CrossRef]
  7. G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
    [CrossRef]
  8. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
    [CrossRef]
  9. Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).
  10. L. Liao, D. S. Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3134 (2005).
    [CrossRef]
  11. A. Liu, L. Liu, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).
  12. W. M. J. Green et al, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express 15, 17106-17113 (2007).
    [CrossRef]
  13. D. M. Morini, L. Vivien, J. M. Fedeli, E. Cassan, P. Lyan, and S. Laval, "Low loss and high speed optical modulator based on a lateral carrier depletion structure," Opt. Express 16, 334-339 (2008).
    [CrossRef]
  14. G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
    [CrossRef]

2008

2007

2005

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).

L. Liao, D. S. Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3134 (2005).
[CrossRef]

G. T. Reed, "Silicon optical modulators," Mater. Today, 40-50 (2005).
[CrossRef]

T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
[CrossRef]

2004

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef]

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef]

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulating and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

1998

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

1991

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

1987

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon." J. Quantum. Electron. QE-23,123-129 (1987).
[CrossRef]

Arakawa, Y.

T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon." J. Quantum. Electron. QE-23,123-129 (1987).
[CrossRef]

Cassan, E.

Chen, Ray T.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).

Chen, X. N.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).

Chetrit, Y.

Chu, T.

T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
[CrossRef]

Ciftcioglu, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef]

Fedeli, J. M.

Franck, T.

Goh, T.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Green, W. M. J.

Gu, L. L.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).

Halbout, J. M.

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

Hattori, K.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Himeno, A.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Hodge, D.

Ishida, S.

T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
[CrossRef]

Izhaky, N.

Jiang, W.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).

Jiang, Y. Q.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef]

Keil, U. D.

Laval, S.

Liao, L.

L. Liao, D. S. Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3134 (2005).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef]

Lipson, M.

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulating and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

Liu, A.

Liu, L.

Lyan, P.

May, P. G.

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

Morini, D. M.

Morse, M.

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef]

Ohmori, Y.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Okuno, M.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Paniccia, M.

A. Liu, L. Liu, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef]

Reed, G. T.

G. T. Reed, "Silicon optical modulators," Mater. Today, 40-50 (2005).
[CrossRef]

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef]

Rubin, D.

Rubio, D. S.

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon." J. Quantum. Electron. QE-23,123-129 (1987).
[CrossRef]

Treyz, G. V.

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

Vivien, L.

Yasu, M.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

Appl. Phys. Lett.

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plama dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and Ray T.  Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105(1-3) (2005).

G. V. Treyz, P. G. May, and J. M. Halbout, "Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect," Appl. Phys. Lett. 59, 771-773 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermo-optical matrix switch," IEEE Photon. Technol. Lett. 10, 810-812 (1998).
[CrossRef]

J. Quantum. Electron.

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon." J. Quantum. Electron. QE-23,123-129 (1987).
[CrossRef]

Mater. Today

G. T. Reed, "Silicon optical modulators," Mater. Today, 40-50 (2005).
[CrossRef]

Nanotechnology

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulating and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

Nature

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
[CrossRef]

Opt. Express

Opt. Express.

T. Chu, S. Ishida, and Y. Arakawa, "Compact 1×N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express. 13, 10109-10114 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics