Abstract

Room temperature, continuous-wave lasing in a quantum dot photonic crystal nanocavity on a Si substrate has been demonstrated by optical pumping. The laser was an air-bridge structure of a two-dimensional photonic crystal GaAs slab with InAs quantum dots inside on a Si substrate fabricated through wafer bonding and layer transfer. This surface-emitting laser exhibited emission at 1.3 μm with a threshold absorbed power of 2 μW, the lowest out of any type of lasers on silicon.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express 13, 9460-9464 (2005).
    [CrossRef] [PubMed]
  2. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector," Opt. Express 15, 2315-2322 (2007).
    [CrossRef] [PubMed]
  3. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
    [CrossRef]
  4. C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
    [CrossRef]
  5. J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
    [CrossRef]
  6. G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. J. Karle, K. Lee, R. Bravive, L. L. Gratiet, S. Guilet, G. Beaudoin, A. Talneau, S. Bouchoule, A. Levenson, and R. Raj, "Continuous-wave operation of photonic band-edge laser near 1.55 ?m on silicon wafer," Opt. Express 15, 7551-7556 (2007).
    [CrossRef] [PubMed]
  7. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
    [CrossRef]
  8. M. H. Shih, A. Mock, M. Bagheri, N. Suh, S. Farrell, S. Choi, J. D. O’Brien, and P. D. Dapkus, "Photonic crystal lasers in InGaAsP on a SiO2/Si substrate and its thermal impedance," Opt. Express 15, 227-232 (2007).
    [CrossRef] [PubMed]
  9. Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
    [CrossRef]
  10. P. Bhattacharya and Z. Mi, "Quantum-dot optoelectronic devices," Proc. IEEE 95, 1723-1740 (2007).
    [CrossRef]
  11. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
    [CrossRef]
  12. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
    [CrossRef] [PubMed]
  13. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, 195313 (2007).
    [CrossRef]
  14. B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006).
    [CrossRef] [PubMed]
  15. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005).
    [CrossRef]
  16. M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, "Photonic band-edge micro lasers with quantum dot gain," Opt. Express 17, 640-648 (2009).
    [CrossRef] [PubMed]
  17. D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, "High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony-mediated metal organic chemical vapor deposition," Appl. Phys. Lett. 89, 183124 (2006).
    [CrossRef]
  18. D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
    [CrossRef]
  19. K. Tanabe, A. Fontcuberta i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, "Direct-bonded GaAs/InGaAs tandem solar cell," Appl. Phys. Lett. 89, 102106 (2006).
    [CrossRef]
  20. Y. Mori and N. Watanabe, "A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics," J. Electrochem. Soc. 125, 1510-1514 (1978).
    [CrossRef]
  21. G. C. DeSalvo, W. F. Tseng, and J. Comas, "Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP," J. Electrochem. Soc. 139, 831-835 (1992).
    [CrossRef]
  22. C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, "Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates," J. Electrochem. Soc. 144, L29-L31 (1997).
    [CrossRef]
  23. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  24. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
    [CrossRef]
  25. C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
    [CrossRef]
  26. S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
    [CrossRef] [PubMed]
  27. G. Björk, A. Karlsson, and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
    [CrossRef]
  28. G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
    [CrossRef] [PubMed]
  29. Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008).
    [CrossRef]

2009 (2)

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, "Photonic band-edge micro lasers with quantum dot gain," Opt. Express 17, 640-648 (2009).
[CrossRef] [PubMed]

2008 (1)

Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008).
[CrossRef]

2007 (5)

2006 (6)

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, "High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony-mediated metal organic chemical vapor deposition," Appl. Phys. Lett. 89, 183124 (2006).
[CrossRef]

K. Tanabe, A. Fontcuberta i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, "Direct-bonded GaAs/InGaAs tandem solar cell," Appl. Phys. Lett. 89, 102106 (2006).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006).
[CrossRef] [PubMed]

2005 (2)

2003 (4)

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

2002 (2)

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

2001 (1)

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

1997 (1)

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, "Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates," J. Electrochem. Soc. 144, L29-L31 (1997).
[CrossRef]

1994 (1)

G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
[CrossRef] [PubMed]

1992 (2)

G. C. DeSalvo, W. F. Tseng, and J. Comas, "Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP," J. Electrochem. Soc. 139, 831-835 (1992).
[CrossRef]

G. Björk, A. Karlsson, and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

1982 (1)

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
[CrossRef]

1978 (1)

Y. Mori and N. Watanabe, "A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics," J. Electrochem. Soc. 125, 1510-1514 (1978).
[CrossRef]

Aiken, D. J.

K. Tanabe, A. Fontcuberta i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, "Direct-bonded GaAs/InGaAs tandem solar cell," Appl. Phys. Lett. 89, 102106 (2006).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Albert, J. P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Arakawa, Y.

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, "Photonic band-edge micro lasers with quantum dot gain," Opt. Express 17, 640-648 (2009).
[CrossRef] [PubMed]

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008).
[CrossRef]

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, 195313 (2007).
[CrossRef]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, "High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony-mediated metal organic chemical vapor deposition," Appl. Phys. Lett. 89, 183124 (2006).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
[CrossRef]

Asano, T.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Atwater, H. A.

K. Tanabe, A. Fontcuberta i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, "Direct-bonded GaAs/InGaAs tandem solar cell," Appl. Phys. Lett. 89, 102106 (2006).
[CrossRef]

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Bagheri, M.

Beaudoin, G.

Ben Bakir, B.

Benz, R. G.

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, "Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates," J. Electrochem. Soc. 144, L29-L31 (1997).
[CrossRef]

Bhattacharya, P.

P. Bhattacharya and Z. Mi, "Quantum-dot optoelectronic devices," Proc. IEEE 95, 1723-1740 (2007).
[CrossRef]

Bicknell-Tassius, R.

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, "Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates," J. Electrochem. Soc. 144, L29-L31 (1997).
[CrossRef]

Björk, G.

G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
[CrossRef] [PubMed]

G. Björk, A. Karlsson, and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

Bouchoule, S.

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Bowers, J. E.

Bravive, R.

Brown, A. S.

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, "Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates," J. Electrochem. Soc. 144, L29-L31 (1997).
[CrossRef]

Carter-Coman, C.

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, "Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates," J. Electrochem. Soc. 144, L29-L31 (1997).
[CrossRef]

Cassagne, D.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Chen, H.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

Choi, S.

Choi, Y.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Cohen, O.

Comas, J.

G. C. DeSalvo, W. F. Tseng, and J. Comas, "Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP," J. Electrochem. Soc. 139, 831-835 (1992).
[CrossRef]

Dapkus, P. D.

Deppe, D. G.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

DeSalvo, G. C.

G. C. DeSalvo, W. F. Tseng, and J. Comas, "Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP," J. Electrochem. Soc. 139, 831-835 (1992).
[CrossRef]

Di Cioccio, L.

d'Yerville, M. L.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Fang, A. W.

Farrell, S.

Fedeli, J. M.

Fontcuberta i Morral, A.

K. Tanabe, A. Fontcuberta i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, "Direct-bonded GaAs/InGaAs tandem solar cell," Appl. Phys. Lett. 89, 102106 (2006).
[CrossRef]

Gendry, M.

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006).
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Gratiet, L. L.

Guilet, S.

Guimard, D.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, "High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony-mediated metal organic chemical vapor deposition," Appl. Phys. Lett. 89, 183124 (2006).
[CrossRef]

Hatsuta, R.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Hollinger, G.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Ishida, M.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

Ishida, S.

Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

Iwamoto, S.

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, "Photonic band-edge micro lasers with quantum dot gain," Opt. Express 17, 640-648 (2009).
[CrossRef] [PubMed]

Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008).
[CrossRef]

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, 195313 (2007).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Jokerst, N. M.

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, "Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates," J. Electrochem. Soc. 144, L29-L31 (1997).
[CrossRef]

Jones, R.

Karle, T. J.

Karlsson, A.

G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
[CrossRef] [PubMed]

G. Björk, A. Karlsson, and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

Kodama, S.

Kondo, H.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

Kumagai, N.

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, "Photonic band-edge micro lasers with quantum dot gain," Opt. Express 17, 640-648 (2009).
[CrossRef] [PubMed]

Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008).
[CrossRef]

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, 195313 (2007).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

Le Vassor d'Yerville, M.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Leclereq, J.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Lee, K.

Letartre, X.

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006).
[CrossRef] [PubMed]

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Levenson, A.

Li, L.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

Mi, Z.

P. Bhattacharya and Z. Mi, "Quantum-dot optoelectronic devices," Proc. IEEE 95, 1723-1740 (2007).
[CrossRef]

Mock, A.

Monat, C.

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Monnier, P.

Mori, Y.

Y. Mori and N. Watanabe, "A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics," J. Electrochem. Soc. 125, 1510-1514 (1978).
[CrossRef]

Moriceau, H.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Mouette, J.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Nakata, Y.

Nishioka, M.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, "High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony-mediated metal organic chemical vapor deposition," Appl. Phys. Lett. 89, 183124 (2006).
[CrossRef]

Noda, S.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Nomura, M.

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, "Photonic band-edge micro lasers with quantum dot gain," Opt. Express 17, 640-648 (2009).
[CrossRef] [PubMed]

Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008).
[CrossRef]

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, 195313 (2007).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

O’Brien, J. D.

Ota, Y.

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, "Photonic band-edge micro lasers with quantum dot gain," Opt. Express 17, 640-648 (2009).
[CrossRef] [PubMed]

Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008).
[CrossRef]

Paniccia, M. J.

Park, H.

Perreau, P.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Raday, O.

Raineri, F.

Raj, R.

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Regreny, P.

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006).
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Regreny, R.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Rojo-Romeo, P.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Sagnes, I.

Sakaki, H.

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
[CrossRef]

Scherer, A.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

Seassal, C.

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006).
[CrossRef] [PubMed]

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Shchekin, O. B.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

Shih, M. H.

Song, B.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Sudo, H.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

Sugawara, M.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

Suh, N.

Talneau, A.

Tanabe, K.

K. Tanabe, A. Fontcuberta i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, "Direct-bonded GaAs/InGaAs tandem solar cell," Appl. Phys. Lett. 89, 102106 (2006).
[CrossRef]

Tanaka, Y.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

Tandaechanurat, A.

Tseng, W. F.

G. C. DeSalvo, W. F. Tseng, and J. Comas, "Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP," J. Electrochem. Soc. 139, 831-835 (1992).
[CrossRef]

Tsukamoto, S.

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, "High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony-mediated metal organic chemical vapor deposition," Appl. Phys. Lett. 89, 183124 (2006).
[CrossRef]

Vecchi, G.

Viktorovitch, P.

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006).
[CrossRef] [PubMed]

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Wanlass, M. W.

K. Tanabe, A. Fontcuberta i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, "Direct-bonded GaAs/InGaAs tandem solar cell," Appl. Phys. Lett. 89, 102106 (2006).
[CrossRef]

Watanabe, K.

Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

Watanabe, N.

Y. Mori and N. Watanabe, "A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics," J. Electrochem. Soc. 125, 1510-1514 (1978).
[CrossRef]

Yacomotti, A.

Yamamoto, T.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

Yamamoto, Y.

G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
[CrossRef] [PubMed]

G. Björk, A. Karlsson, and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

Yoshie, T.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

Zussy, M.

Appl. Phys. Lett. (8)

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
[CrossRef]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, "High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony-mediated metal organic chemical vapor deposition," Appl. Phys. Lett. 89, 183124 (2006).
[CrossRef]

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009).
[CrossRef]

K. Tanabe, A. Fontcuberta i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, "Direct-bonded GaAs/InGaAs tandem solar cell," Appl. Phys. Lett. 89, 102106 (2006).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

G. Björk, A. Karlsson, and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008).
[CrossRef]

Electron. Lett. (3)

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

J. Appl. Phys. (1)

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003).
[CrossRef]

J. Electrochem. Soc. (3)

Y. Mori and N. Watanabe, "A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics," J. Electrochem. Soc. 125, 1510-1514 (1978).
[CrossRef]

G. C. DeSalvo, W. F. Tseng, and J. Comas, "Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP," J. Electrochem. Soc. 139, 831-835 (1992).
[CrossRef]

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, "Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates," J. Electrochem. Soc. 144, L29-L31 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

M. H. Shih, A. Mock, M. Bagheri, N. Suh, S. Farrell, S. Choi, J. D. O’Brien, and P. D. Dapkus, "Photonic crystal lasers in InGaAsP on a SiO2/Si substrate and its thermal impedance," Opt. Express 15, 227-232 (2007).
[CrossRef] [PubMed]

G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. J. Karle, K. Lee, R. Bravive, L. L. Gratiet, S. Guilet, G. Beaudoin, A. Talneau, S. Bouchoule, A. Levenson, and R. Raj, "Continuous-wave operation of photonic band-edge laser near 1.55 ?m on silicon wafer," Opt. Express 15, 7551-7556 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express 13, 9460-9464 (2005).
[CrossRef] [PubMed]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector," Opt. Express 15, 2315-2322 (2007).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, "Photonic band-edge micro lasers with quantum dot gain," Opt. Express 17, 640-648 (2009).
[CrossRef] [PubMed]

Phys. Rev. A (1)

G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
[CrossRef] [PubMed]

Phys. Rev. B (1)

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, 195313 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Proc. IEEE (1)

P. Bhattacharya and Z. Mi, "Quantum-dot optoelectronic devices," Proc. IEEE 95, 1723-1740 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Cross-sectional schematic of the laser device layer structure and fabrication process.

Fig. 2
Fig. 2

Cross-sectional scanning electron microscope (SEM) image of the air-bridge structure of InAs/GaAs QD - PhC on silicon substrate. (Inset) Plane view of the PhC structure around the cavity.

Fig. 3.
Fig. 3.

(a). Photoluminescence spectrum at 100 μW incident pump power and (b) output optical power dependence on pump power for the lasing photonic crystal nanocavity mode under continuous-wave optical pumping at room temperature. Also shown in the inset of (a) is a photoluminescence spectrum at 30 μW incident pump power for a region of the same InAs/GaAs quantum dot slab but outside the photonic crystal pattern.

Fig. 4.
Fig. 4.

Logarithmic L-L plot of the lasing photonic crystal nanocavity mode under continuous-wave pumping at room temperature. Also plotted is the linewidth dependence on pump power. The dotted lines fitted to the L-L plot are both linear and the solid curve is a fit by the coupled rate model calculation. The dotted lines fitted to the linewidth plot represent the slope at each region.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dN dt = R ex N τ r N τ nr c n eff · Γg ( N ) P ,
dP dt = c n eff · Γg ( N ) P + β N τ r P τ p ,

Metrics