Abstract

Periodic arrays of subwavelength apertures in metal films have been shown to exhibit strongly enhanced transmission at wavelengths determined by the periodicity of the film as well as the optical properties of the metal and surrounding dielectric material. Here we investigate the coupling between such a grating and a Quantum Cascade Laser. By actively tuning the optical properties of our grating, we control the coupling of laser light to the plasmonic structure, switching our grating from a predominantly transmitting state to a state that allows coupling to propagating surface waves, which can then be imaged on the metallic surface.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Heitmann and H. Raether, "Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces," Surf. Sci 59, 17-22 (1976).
  2. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-Plasmon Resonance Effect in Grating Diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
  4. F. García-Vidal, L. Martín-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
  5. C. Genet, T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39-46 (2007).
    [PubMed]
  6. K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8671-8675 (2004).
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
    [PubMed]
  8. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
  9. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [PubMed]
  10. R. Müller, V. Malyarchuk, and C. Lienau "Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes," Phys. Rev. B 68, 205415-205423 (2003).
  11. S.-H. Chang, S. Gray, and G. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
    [PubMed]
  12. P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, "Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films," Opt. Express 15, 7984-7993 (2007).
    [PubMed]
  13. H. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 36293651 (2004).
  14. P. Lalanne and J. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).
  15. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2005).
  16. F. García de Abajo and J. J. Sáens, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).
  17. H. Liu and P. Lalanne, "Microscopic Theory of Extraordinary transmission," Nature 452728-731 (2008).
    [PubMed]
  18. D. Pacifici, H. J. Lezec, R. J. Walters, and H. A Atwater, "Universal optical transmission features in periodic and quasiperiodic hole arrays," Opt. Express 169222-9238 (2008).
    [PubMed]
  19. T. Ribaudo, B. Passmore, K. Freitas, E. A. Shaner, J. G. Cederberg, and D. Wasserman, "Loss mechanisms in mid-infrared extraordinary optical transmission gratings," Opt. Express 17, 666-675 (2009).
    [PubMed]
  20. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
  21. E. A. Shaner, J. Cederberg, and D. Wasserman, "Current-tunable mid-infrared extraordinary transmission gratings," Appl. Phys. Lett. 91, 181110 (2007).
  22. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves," J. Lightwave Technol. 24, 43914402 (4391).
  23. D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photonics 1, 402-406 (2007).
  24. J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures," Opt. Lett. 29,16801682 (2004).
  25. C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures," Opt. Lett. 30, 2357-2359 (2005).
    [PubMed]
  26. J. Gómez Rivas, M. Kuttge, H. Kurz P. Haring Bolivar and J. A. Sánchez-Gil, "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106 (2006).
  27. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008).
    [PubMed]
  28. J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123-R181 (1982).
  29. C. P. Christensen, R. Joiner, S. T. K. Nieh, and W. H. Steier, "Investigation of infrared loss mechanisms in high-resistivity GaAs," J. Appl. Phys. 45,4957-4960 (1974).
  30. W. L. Barnes, "Surface plasmon-polariton length scales: a route to sub-wavelength optics," J. Opt. A: Pure Appl. Opt. 8, S87-S93 (2006).
  31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983).
    [PubMed]

4391 (1)

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves," J. Lightwave Technol. 24, 43914402 (4391).

2009 (1)

2008 (3)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008).
[PubMed]

H. Liu and P. Lalanne, "Microscopic Theory of Extraordinary transmission," Nature 452728-731 (2008).
[PubMed]

D. Pacifici, H. J. Lezec, R. J. Walters, and H. A Atwater, "Universal optical transmission features in periodic and quasiperiodic hole arrays," Opt. Express 169222-9238 (2008).
[PubMed]

2007 (4)

P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, "Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films," Opt. Express 15, 7984-7993 (2007).
[PubMed]

C. Genet, T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39-46 (2007).
[PubMed]

E. A. Shaner, J. Cederberg, and D. Wasserman, "Current-tunable mid-infrared extraordinary transmission gratings," Appl. Phys. Lett. 91, 181110 (2007).

D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photonics 1, 402-406 (2007).

2006 (3)

W. L. Barnes, "Surface plasmon-polariton length scales: a route to sub-wavelength optics," J. Opt. A: Pure Appl. Opt. 8, S87-S93 (2006).

J. Gómez Rivas, M. Kuttge, H. Kurz P. Haring Bolivar and J. A. Sánchez-Gil, "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106 (2006).

P. Lalanne and J. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).

2005 (4)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2005).

F. García de Abajo and J. J. Sáens, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).

S.-H. Chang, S. Gray, and G. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
[PubMed]

C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures," Opt. Lett. 30, 2357-2359 (2005).
[PubMed]

2004 (3)

J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures," Opt. Lett. 29,16801682 (2004).

H. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 36293651 (2004).

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8671-8675 (2004).

2003 (3)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[PubMed]

F. García-Vidal, L. Martín-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).

R. Müller, V. Malyarchuk, and C. Lienau "Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes," Phys. Rev. B 68, 205415-205423 (2003).

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[PubMed]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).

1983 (1)

1982 (1)

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123-R181 (1982).

1976 (1)

D. Heitmann and H. Raether, "Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces," Surf. Sci 59, 17-22 (1976).

1974 (1)

C. P. Christensen, R. Joiner, S. T. K. Nieh, and W. H. Steier, "Investigation of infrared loss mechanisms in high-resistivity GaAs," J. Appl. Phys. 45,4957-4960 (1974).

1968 (1)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-Plasmon Resonance Effect in Grating Diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).

Alexander, R. W.

Arakawa, E. T.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-Plasmon Resonance Effect in Grating Diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).

Atwater, H. A

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photonics 1, 402-406 (2007).

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).

Barnes, W. L.

W. L. Barnes, "Surface plasmon-polariton length scales: a route to sub-wavelength optics," J. Opt. A: Pure Appl. Opt. 8, S87-S93 (2006).

Bell, R. J.

Bell, R. R.

Bell, S. E.

Berini, P.

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves," J. Lightwave Technol. 24, 43914402 (4391).

Blakemore, J. S.

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123-R181 (1982).

Bonn, M.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008).
[PubMed]

Cederberg, J.

E. A. Shaner, J. Cederberg, and D. Wasserman, "Current-tunable mid-infrared extraordinary transmission gratings," Appl. Phys. Lett. 91, 181110 (2007).

Cederberg, J. G.

Chang, S.-H.

Christensen, C. P.

C. P. Christensen, R. Joiner, S. T. K. Nieh, and W. H. Steier, "Investigation of infrared loss mechanisms in high-resistivity GaAs," J. Appl. Phys. 45,4957-4960 (1974).

Coe, J. V.

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8671-8675 (2004).

Collins, R. T.

Cowan, J. J.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-Plasmon Resonance Effect in Grating Diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[PubMed]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).

Ebbesen, T. W.

C. Genet, T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39-46 (2007).
[PubMed]

F. García-Vidal, L. Martín-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).

Flammer, P. D.

Freitas, K.

Gagnon, G.

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves," J. Lightwave Technol. 24, 43914402 (4391).

García de Abajo, F.

F. García de Abajo and J. J. Sáens, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).

Garcia-Vidal, F. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008).
[PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2005).

García-Vidal, F.

F. García-Vidal, L. Martín-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[PubMed]

Genet, C.

C. Genet, T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39-46 (2007).
[PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).

Gómez Rivas, J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008).
[PubMed]

J. Gómez Rivas, M. Kuttge, H. Kurz P. Haring Bolivar and J. A. Sánchez-Gil, "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106 (2006).

C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures," Opt. Lett. 30, 2357-2359 (2005).
[PubMed]

J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures," Opt. Lett. 29,16801682 (2004).

Gray, S.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).

Hamm, R. N.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-Plasmon Resonance Effect in Grating Diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).

Haring Bolivar, P.

C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures," Opt. Lett. 30, 2357-2359 (2005).
[PubMed]

J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures," Opt. Lett. 29,16801682 (2004).

Heitmann, D.

D. Heitmann and H. Raether, "Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces," Surf. Sci 59, 17-22 (1976).

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008).
[PubMed]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008).
[PubMed]

Hollingsworth, R. E.

Hugonin, J.

P. Lalanne and J. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).

Janke, C.

Joiner, R.

C. P. Christensen, R. Joiner, S. T. K. Nieh, and W. H. Steier, "Investigation of infrared loss mechanisms in high-resistivity GaAs," J. Appl. Phys. 45,4957-4960 (1974).

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).

Kurz, H.

C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures," Opt. Lett. 30, 2357-2359 (2005).
[PubMed]

J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures," Opt. Lett. 29,16801682 (2004).

Kuttge, M.

J. Gómez Rivas, M. Kuttge, H. Kurz P. Haring Bolivar and J. A. Sánchez-Gil, "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106 (2006).

Lahoud, N.

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves," J. Lightwave Technol. 24, 43914402 (4391).

Lalanne, P.

H. Liu and P. Lalanne, "Microscopic Theory of Extraordinary transmission," Nature 452728-731 (2008).
[PubMed]

P. Lalanne and J. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).

Leitner, A.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).

Lezec, H.

H. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 36293651 (2004).

Lezec, H. J.

D. Pacifici, H. J. Lezec, R. J. Walters, and H. A Atwater, "Universal optical transmission features in periodic and quasiperiodic hole arrays," Opt. Express 169222-9238 (2008).
[PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photonics 1, 402-406 (2007).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[PubMed]

F. García-Vidal, L. Martín-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).

Lienau, C.

R. Müller, V. Malyarchuk, and C. Lienau "Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes," Phys. Rev. B 68, 205415-205423 (2003).

Liu, H.

H. Liu and P. Lalanne, "Microscopic Theory of Extraordinary transmission," Nature 452728-731 (2008).
[PubMed]

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008).
[PubMed]

Long, L. L.

Malyarchuk, V.

R. Müller, V. Malyarchuk, and C. Lienau "Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes," Phys. Rev. B 68, 205415-205423 (2003).

Martin-Moreno, L.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008).
[PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2005).

F. García-Vidal, L. Martín-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[PubMed]

Mattiussi, G. A.

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves," J. Lightwave Technol. 24, 43914402 (4391).

Müller, R.

R. Müller, V. Malyarchuk, and C. Lienau "Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes," Phys. Rev. B 68, 205415-205423 (2003).

Nieh, S. T. K.

C. P. Christensen, R. Joiner, S. T. K. Nieh, and W. H. Steier, "Investigation of infrared loss mechanisms in high-resistivity GaAs," J. Appl. Phys. 45,4957-4960 (1974).

Ordal, M. A.

Pacifici, D.

D. Pacifici, H. J. Lezec, R. J. Walters, and H. A Atwater, "Universal optical transmission features in periodic and quasiperiodic hole arrays," Opt. Express 169222-9238 (2008).
[PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photonics 1, 402-406 (2007).

Passmore, B.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2005).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[PubMed]

Raether, H.

D. Heitmann and H. Raether, "Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces," Surf. Sci 59, 17-22 (1976).

Ribaudo, T.

Ritchie, R. H.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-Plasmon Resonance Effect in Grating Diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).

Rodriguez, K. R.

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8671-8675 (2004).

Sáens, J. J.

F. García de Abajo and J. J. Sáens, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).

Schatz, G.

Schick, I. C.

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).

Shah, S.

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8671-8675 (2004).

Shaner, E. A.

T. Ribaudo, B. Passmore, K. Freitas, E. A. Shaner, J. G. Cederberg, and D. Wasserman, "Loss mechanisms in mid-infrared extraordinary optical transmission gratings," Opt. Express 17, 666-675 (2009).
[PubMed]

E. A. Shaner, J. Cederberg, and D. Wasserman, "Current-tunable mid-infrared extraordinary transmission gratings," Appl. Phys. Lett. 91, 181110 (2007).

Steier, W. H.

C. P. Christensen, R. Joiner, S. T. K. Nieh, and W. H. Steier, "Investigation of infrared loss mechanisms in high-resistivity GaAs," J. Appl. Phys. 45,4957-4960 (1974).

Teeters-Kennedy, S.

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8671-8675 (2004).

Thio, T.

H. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 36293651 (2004).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).

Walters, R. J.

Ward, C. A.

Wasserman, D.

T. Ribaudo, B. Passmore, K. Freitas, E. A. Shaner, J. G. Cederberg, and D. Wasserman, "Loss mechanisms in mid-infrared extraordinary optical transmission gratings," Opt. Express 17, 666-675 (2009).
[PubMed]

E. A. Shaner, J. Cederberg, and D. Wasserman, "Current-tunable mid-infrared extraordinary transmission gratings," Appl. Phys. Lett. 91, 181110 (2007).

Williams, S. M.

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8671-8675 (2004).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

Appl. Opt. (1)

Appl. Phys. Lett. (4)

E. A. Shaner, J. Cederberg, and D. Wasserman, "Current-tunable mid-infrared extraordinary transmission gratings," Appl. Phys. Lett. 91, 181110 (2007).

J. Gómez Rivas, M. Kuttge, H. Kurz P. Haring Bolivar and J. A. Sánchez-Gil, "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106 (2006).

F. García-Vidal, L. Martín-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).

J. Appl. Phys. (2)

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123-R181 (1982).

C. P. Christensen, R. Joiner, S. T. K. Nieh, and W. H. Steier, "Investigation of infrared loss mechanisms in high-resistivity GaAs," J. Appl. Phys. 45,4957-4960 (1974).

J. Chem. Phys. (1)

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8671-8675 (2004).

J. Lightwave Technol. (1)

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves," J. Lightwave Technol. 24, 43914402 (4391).

J. Opt. A: Pure Appl. Opt. (1)

W. L. Barnes, "Surface plasmon-polariton length scales: a route to sub-wavelength optics," J. Opt. A: Pure Appl. Opt. 8, S87-S93 (2006).

Nat. Photonics (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photonics 1, 402-406 (2007).

Nat. Phys. (1)

P. Lalanne and J. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).

Nature (3)

C. Genet, T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39-46 (2007).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

H. Liu and P. Lalanne, "Microscopic Theory of Extraordinary transmission," Nature 452728-731 (2008).
[PubMed]

Opt. Express (5)

Opt. Lett. (2)

J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures," Opt. Lett. 29,16801682 (2004).

C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures," Opt. Lett. 30, 2357-2359 (2005).
[PubMed]

Phys. Rev. B (2)

R. Müller, V. Malyarchuk, and C. Lienau "Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes," Phys. Rev. B 68, 205415-205423 (2003).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).

Phys. Rev. Lett. (5)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-Plasmon Resonance Effect in Grating Diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[PubMed]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008).
[PubMed]

F. García de Abajo and J. J. Sáens, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2005).

Surf. Sci (1)

D. Heitmann and H. Raether, "Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces," Surf. Sci 59, 17-22 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). QCL emission spectrum (short wavelength-blue, long wavelength-red) and normal incidence, room temperature (RT) broadband transmission through EOT grating sample (green). (b) Schematic of dual wavelength QCL, (c) Scanning Electron Micrograph of EOT grating surface, and (d) diagram of coordinate system used in this work.

Fig. 2.
Fig. 2.

(a). EOT grating transmission spectra as a function of incidence angle (RT) (b) Normal incidence EOT transmission for sample temperatures from RT to 235°C (c) Long wavelength QCL spectra and EOT transmission spectra at RT and 235 °C for 8° angle of incidence.

Fig. 3.
Fig. 3.

Laser light transmitted through EOT grating as a function of wavenumber (cm-1) and incidence angle for selected polarizations, laser lines, and sample temperatures (a) x-polarized, long wavelength (LW), RT (b) y-polarized, LW, RT (c) x-polarized, LW, 235°C (d) x-polarized, short wavelength, RT. The same color limits are used for each contour plot, with Io corresponding to the maximum transmitted laser intensity in (a). The overlaid spectra show the laser emission incident on the sample for each polarization and wavelength range plotted.

Fig. 4.
Fig. 4.

Surface contour plots of transmitted light intensity as a function wavenumber (cm-1) and x-position (mm) for (a) x-polarized light incident upon a RT grating (b) y-polarized and (c) x-polarized light incident upon a shifted (235°C) grating, with (c) showing the SP mode propagating in the -x direction. The overlaid spectra in (a) and (c) show the EOT transmission at room and high temperature, respectively. (d) Intensity vs. position plot for 9.7 μm light incident upon the redshifted grating, with inset showing curve fit to decaying propagation tail. Fabry-Perot reflections for plots (a)–(c) can be seen on the x>0 side of the laser spot.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( a ) k spp 2 = ω 2 c 2 ( ε d ε m ε d + ε m ) ( b ) k spp = k xph ± 2 π a o m , k xph = k ph sin θ

Metrics