Abstract

The polarization-dependent guiding properties of a hexagonal-lattice photonic crystal fiber with a solid-core surrounded by four large air holes are investigated. The appearance of a polarization dependent cutoff frequency, together with several parameters as the birefringence, the modal effective area, the group velocity dispersion and the polarization dependent loss are analyzed. A collection of fibers with different structural parameters were fabricated and characterized. An effective anti-guide structure from at least 450 nm to 1750 nm, a polarizing fiber with a polarization dependent loss of 16 dB/m at 1550 nm, and an endlessly singlemode polarization-maintaining fiber with group birefringence of 2.1×10-3 at 1550 nm are reported. Experimental results are compared with accurate numerical modeling of the fibers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358 (2003).
    [CrossRef] [PubMed]
  2. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  3. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-676.
    [CrossRef] [PubMed]
  4. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
    [CrossRef]
  5. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen and H. R. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004).
    [CrossRef] [PubMed]
  6. A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004).
    [CrossRef]
  7. W. Belardi, G. Bouwmans, L. Provino, and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
    [CrossRef]
  8. J. R. Folkenberg, M. D. Nielsen and C. Jakobsen, "Broadband single-polarization photonic crystal fiber," Opt. Lett. 30, 1446-1448 (2005).
    [CrossRef] [PubMed]
  9. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, "Stress-induced birefringence in large-mode-area micro-structured optical fibers," Opt. Express 13, 3637-3646 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-10-3637.
    [CrossRef] [PubMed]
  10. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber", IEEE Photon. Technol. Lett. 16, 182-184, (2004).
    [CrossRef]
  11. J. Ju, W. Jin and M. S. Demokan, "Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 ?m," J. Lightwave Technol. 24, 825-830 (2006).
    [CrossRef]
  12. K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
    [CrossRef]
  13. M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, "High extinction-ratio polarizing endlessly single-mode photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 562-564 (2007).
    [CrossRef]
  14. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173, MIT Photonic-Bands package available at: http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands
    [CrossRef] [PubMed]
  15. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-341.
    [PubMed]
  16. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, "Modal cutoff in microstructured optical fibers," Opt. Lett. 27, 1684-1686 (2002).
    [CrossRef]
  17. E. Silvestre, T. Pinheiro-Ortega, P. Andres, J. J. Miret, and A. Ortigosa-Blanch, "Analytical evaluation of chromatic dispersion in photonic crystal fibers," Opt. Lett. 30, 453-455 (2005).
    [CrossRef] [PubMed]
  18. R. B. Dyott, Elliptical Fiber Waveguides (London: Artech House, 1995).

2007 (1)

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, "High extinction-ratio polarizing endlessly single-mode photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 562-564 (2007).
[CrossRef]

2006 (1)

2005 (4)

2004 (3)

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber", IEEE Photon. Technol. Lett. 16, 182-184, (2004).
[CrossRef]

J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen and H. R. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004).
[CrossRef]

2003 (2)

K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358 (2003).
[CrossRef] [PubMed]

2002 (2)

2001 (3)

2000 (1)

Andres, M. V.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, "High extinction-ratio polarizing endlessly single-mode photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 562-564 (2007).
[CrossRef]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004).
[CrossRef]

Andres, P.

Arriaga, J.

Belardi, W.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Bouwmans, G.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Cruz, J. L.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, "High extinction-ratio polarizing endlessly single-mode photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 562-564 (2007).
[CrossRef]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004).
[CrossRef]

de Sterke, C. M.

Delgado-Pinar, M.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, "High extinction-ratio polarizing endlessly single-mode photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 562-564 (2007).
[CrossRef]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004).
[CrossRef]

Demokan, M. S.

Diez, A.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, "High extinction-ratio polarizing endlessly single-mode photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 562-564 (2007).
[CrossRef]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004).
[CrossRef]

Douay, M.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

Folkenberg, J. R.

Fujita, M.

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Jakobsen, C.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Jin, W.

Joannopoulos, J. D.

Johnson, S. G.

Ju, J.

Kawanishi, S.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Koshiba, M.

K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Koyanagi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber", IEEE Photon. Technol. Lett. 16, 182-184, (2004).
[CrossRef]

Kubota, H.

Kuhlmey, B. T.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Limpert, J.

Mangan, B. J.

McPhedran, R. C.

Miret, J. J.

Mortensen, N. A.

Nielsen, M. D.

Ortigosa-Blanch, A.

Pinheiro-Ortega, T.

Provino, L.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

Röser, F.

Russell, P. S. J.

Russell, P. St. J.

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358 (2003).
[CrossRef] [PubMed]

Saitoh, K.

K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Schmidt, O.

Schreiber, T.

Schultz, H.

Silvestre, E.

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Simonsen, H. R.

Suzuki, K.

Tanaka, M.

Tünnermann, A.

Wadsworth, W. J.

Yamaguchi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber", IEEE Photon. Technol. Lett. 16, 182-184, (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, "High extinction-ratio polarizing endlessly single-mode photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 562-564 (2007).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber", IEEE Photon. Technol. Lett. 16, 182-184, (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (4)

Science (1)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358 (2003).
[CrossRef] [PubMed]

Other (1)

R. B. Dyott, Elliptical Fiber Waveguides (London: Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Difference between the modal index and the cladding effective index, for the two polarization eigenstates of the fundamental mode. D/Λ = 0.8, d/Λ = 0.39, Λ = 3.3 μm. Inset shows the microstructure of the fiber and the mode intensity pattern. The orientation of the electric field is indicated. (b) Effective area of the two polarization modes vs. wavelength. D/Λ = 0.8, Λ = 3.3 μm. d/Λ = 0.36 (solid line), d/Λ = 0.38 (dashed line), and d/Λ = 0.4 (dotted line).

Fig. 2.
Fig. 2.

Map of guided modes as a function of the structural parameters at a fix normalized frequency Λ/λ = 2. The dashed line indicates the cutoff of the first high-order mode. The diagonal line corresponds to a regular MF.

Fig. 3.
Fig. 3.

(a) SEM image of fiber 3. (b)–(c) Output far-field pattern at 633 nm of fiber 1 and fiber 3, respectively, under similar illumination conditions. Fiber length 10 cm and 2 m, respectively.

Fig. 4.
Fig. 4.

(a) Calculated group index of the two polarization guided modes of fiber 2 (dashed line) and fiber 3 (solid line). The vertical dotted line indicates the theoretical cutoff of the fast mode of fiber 2. (b) Group birefringence vs. wavelength. Lines are the theoretical results for fiber 2 (dashed line), and fiber 3 (solid line). Dots are experimental data.

Fig. 5.
Fig. 5.

Group velocity dispersion (D) vs. wavelength. Lines are the theoretical results for the slow mode of fiber 2 (dashed line), and for both polarization modes of fiber 3 (solid line). Dots are experimental data. Inset shows the measurement of group delay vs. wavelength for the two polarization modes of fiber 3 (fiber length 9.5 m).

Tables (1)

Tables Icon

Table 1. Structural parameters of the fiber: pitch of the regular lattice (Λ), diameter of the holes of the regular lattice (d), diameter of the large holes (D), and core diameter (long/short side).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = 1 L

Metrics