Abstract

An experiment of all-optical regeneration of short-pulse differential phase-shift keying (DPSK) signals using fiber nonlinearity is reported. Bit error rate (BER) performance is measured for a two-span transmission system where the regenerator is inserted between the spans. Two cases are examined where the signal degradation before the regenerator is due mainly to nonlinearity of the transmission fiber, i.e., the nonlinear phase noise, and is due to addition of amplified spontaneous emission (ASE). The regenerator is shown to be more effective in recovering signal quality in the former case of degradation due to phase noise.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Leclerc, B. Lavigne, D. Chiaroni, and E. Desurvire, "All-optical regeneration: Principles and WDM implementation," in Optical Fiber Telecommunications IV A, Components, I. Kaminow and T. Li, eds. (Academic Press, 2002), pp. 732-783.
  2. T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
    [CrossRef]
  3. M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005).
    [CrossRef] [PubMed]
  4. C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
    [CrossRef]
  5. V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, 1021-1022 (2005).
    [CrossRef]
  6. Q1. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl(Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. -Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, "Charcterization of dynamical processes in all-optical signal processing using semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 14, 758-769 (2008).
    [CrossRef]
  7. P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
    [CrossRef]
  8. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, "Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier," Opt. Express 14, 2085-2094 (2006).
    [CrossRef] [PubMed]
  9. K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
    [CrossRef]
  10. F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, C. Schubert, "All-optical amplitude noise suppression of 160-Gb/s OOK and DPSK data signals using a parametric fiber switch," 2007 Optical Fiber Communication Conference, paper OThB3 (2007).
  11. M. Matsumoto and K. Sanuki, "Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter," Opt. Express 15, 8094-8103 (2007).
    [CrossRef] [PubMed]
  12. M. Matsumoto and H. Sakaguchi, "DPSK signal regeneration using a fiber-based amplitude regenerator," Opt. Express 16, 11169-11175 (2008).
    [CrossRef] [PubMed]
  13. S. Ferber, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, L. Molle, K. Habel, M. Rohde, H. G. Weber, F. Futami, and S. Watanabe, "160Gb/s regenerating conversion node," 2004 Optical Fiber Communication Conference, paper ThT2 (2004).
  14. M. Yagi, S. Satomi, and S. Ryu, "All-optical 2R-regenerative interconnection node for DPSK polarization-division multiplexed systems," 2007 Optical Fiber Communication Conference, paper OThR3 (2007).
  15. C. Schmidt-Langhorst, R. Ludwig, M. Galili, B. Huettl, F. Futami, S. Watanabe, and C. Schubert, "160 Gbit/s all-optical OOK to DPSK in-line format conversion," 2006 European Conference on Optical Communication, paper Th 4.3.5 (2006).
  16. M. Matsumoto, Y. Shimada, and H. Sakaguchi, "Two-stage SPM-based all-optical 2R regeneration by bidirectional use of a highly nonlinear fiber," IEEE J. Quantum Electron. 45, 51-58 (2009).
    [CrossRef]
  17. M. Matsumoto, "A fiber-based all-optical 3R regenerator for DPSK signals," IEEE Photon. Technol. Lett. 19, 273-275 (2007).
    [CrossRef]
  18. R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
    [CrossRef]
  19. T. -H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
    [CrossRef]
  20. M. Jinno, "All-optical signal regularizing/regeneration using a nonlinear fiber Sagnac interferometer switch with signal-clock walk-off," J. Lightwave Technol. 12, 1648-1659 (1994).
    [CrossRef]
  21. M. Sköld, J. Yang, H. Sunnerud, M. Karlsson, S. Oda, and P. A. Andrekson, "Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier," Opt. Express 16, 5974-5982 (2008).
    [CrossRef] [PubMed]

2009 (1)

M. Matsumoto, Y. Shimada, and H. Sakaguchi, "Two-stage SPM-based all-optical 2R regeneration by bidirectional use of a highly nonlinear fiber," IEEE J. Quantum Electron. 45, 51-58 (2009).
[CrossRef]

2008 (4)

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Q1. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl(Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. -Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, "Charcterization of dynamical processes in all-optical signal processing using semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 14, 758-769 (2008).
[CrossRef]

M. Sköld, J. Yang, H. Sunnerud, M. Karlsson, S. Oda, and P. A. Andrekson, "Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier," Opt. Express 16, 5974-5982 (2008).
[CrossRef] [PubMed]

M. Matsumoto and H. Sakaguchi, "DPSK signal regeneration using a fiber-based amplitude regenerator," Opt. Express 16, 11169-11175 (2008).
[CrossRef] [PubMed]

2007 (3)

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
[CrossRef]

M. Matsumoto and K. Sanuki, "Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter," Opt. Express 15, 8094-8103 (2007).
[CrossRef] [PubMed]

M. Matsumoto, "A fiber-based all-optical 3R regenerator for DPSK signals," IEEE Photon. Technol. Lett. 19, 273-275 (2007).
[CrossRef]

2006 (2)

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, "Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier," Opt. Express 14, 2085-2094 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005).
[CrossRef] [PubMed]

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, 1021-1022 (2005).
[CrossRef]

2004 (1)

T. -H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

2003 (2)

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
[CrossRef]

1994 (1)

M. Jinno, "All-optical signal regularizing/regeneration using a nonlinear fiber Sagnac interferometer switch with signal-clock walk-off," J. Lightwave Technol. 12, 1648-1659 (1994).
[CrossRef]

Andrekson, P. A.

Bornholdt, C.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Böttger, G.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Buhl, L. L.

Q1. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl(Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. -Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, "Charcterization of dynamical processes in all-optical signal processing using semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 14, 758-769 (2008).
[CrossRef]

Croussore, K.

Cvecek, K.

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
[CrossRef]

Devgan, P.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, 1021-1022 (2005).
[CrossRef]

Dinu, M.

Q1. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl(Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. -Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, "Charcterization of dynamical processes in all-optical signal processing using semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 14, 758-769 (2008).
[CrossRef]

Dorrer, C.

Q1. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl(Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. -Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, "Charcterization of dynamical processes in all-optical signal processing using semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 14, 758-769 (2008).
[CrossRef]

Freude, W.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Grigoryan, V. S.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, 1021-1022 (2005).
[CrossRef]

Han, Y.

Headley, C.

T. -H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Her, T. -H.

T. -H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Hirano, A.

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
[CrossRef]

Jinno, M.

M. Jinno, "All-optical signal regularizing/regeneration using a nonlinear fiber Sagnac interferometer switch with signal-clock walk-off," J. Lightwave Technol. 12, 1648-1659 (1994).
[CrossRef]

Kang, I.

Q1. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl(Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. -Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, "Charcterization of dynamical processes in all-optical signal processing using semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 14, 758-769 (2008).
[CrossRef]

Karlsson, M.

Kawanishi, S.

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
[CrossRef]

Kim, C.

Kim, I.

Kouloumentas, C.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Kumar, P.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, 1021-1022 (2005).
[CrossRef]

Lakoba, T. I.

Leuchs, G.

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
[CrossRef]

Leuthold, J.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Li, G.

Manning, R. J.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

Marculescu, A.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Matsumoto, M.

M. Matsumoto, Y. Shimada, and H. Sakaguchi, "Two-stage SPM-based all-optical 2R regeneration by bidirectional use of a highly nonlinear fiber," IEEE J. Quantum Electron. 45, 51-58 (2009).
[CrossRef]

M. Matsumoto and H. Sakaguchi, "DPSK signal regeneration using a fiber-based amplitude regenerator," Opt. Express 16, 11169-11175 (2008).
[CrossRef] [PubMed]

M. Matsumoto and K. Sanuki, "Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter," Opt. Express 15, 8094-8103 (2007).
[CrossRef] [PubMed]

M. Matsumoto, "A fiber-based all-optical 3R regenerator for DPSK signals," IEEE Photon. Technol. Lett. 19, 273-275 (2007).
[CrossRef]

Maxwell, G. D.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

Mori, K.

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
[CrossRef]

Oda, S.

Ohara, T.

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
[CrossRef]

Onishchukov, G.

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
[CrossRef]

Petropoulos, P.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Poustie, A. J.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

Provost, L.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Rasras, M.

Q1. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl(Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. -Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, "Charcterization of dynamical processes in all-optical signal processing using semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 14, 758-769 (2008).
[CrossRef]

Raybon, G.

T. -H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Sakaguchi, H.

M. Matsumoto, Y. Shimada, and H. Sakaguchi, "Two-stage SPM-based all-optical 2R regeneration by bidirectional use of a highly nonlinear fiber," IEEE J. Quantum Electron. 45, 51-58 (2009).
[CrossRef]

M. Matsumoto and H. Sakaguchi, "DPSK signal regeneration using a fiber-based amplitude regenerator," Opt. Express 16, 11169-11175 (2008).
[CrossRef] [PubMed]

Sanuki, K.

Sartorius, B.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Schlak, M.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Schmauss, B.

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
[CrossRef]

Schmidt, C.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Shimada, Y.

M. Matsumoto, Y. Shimada, and H. Sakaguchi, "Two-stage SPM-based all-optical 2R regeneration by bidirectional use of a highly nonlinear fiber," IEEE J. Quantum Electron. 45, 51-58 (2009).
[CrossRef]

Shin, M.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, 1021-1022 (2005).
[CrossRef]

Sköld, M.

Slovak, J.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Sponsel, K.

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
[CrossRef]

Sunnerud, H.

Takara, H.

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
[CrossRef]

Tomkos, I.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Tsadka, S.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Vasilyev, M.

Vorreau, P.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Wang, J.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Webb, R. P.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

Yang, J.

Zhang, L.

Q1. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl(Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. -Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, "Charcterization of dynamical processes in all-optical signal processing using semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 14, 758-769 (2008).
[CrossRef]

Electron. Lett. (2)

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, 1021-1022 (2005).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Matsumoto, Y. Shimada, and H. Sakaguchi, "Two-stage SPM-based all-optical 2R regeneration by bidirectional use of a highly nonlinear fiber," IEEE J. Quantum Electron. 45, 51-58 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Q1. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl(Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. W. -Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, "Charcterization of dynamical processes in all-optical signal processing using semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 14, 758-769 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
[CrossRef]

M. Matsumoto, "A fiber-based all-optical 3R regenerator for DPSK signals," IEEE Photon. Technol. Lett. 19, 273-275 (2007).
[CrossRef]

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s x 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
[CrossRef]

T. -H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

J. Lightwave Technol. (1)

M. Jinno, "All-optical signal regularizing/regeneration using a nonlinear fiber Sagnac interferometer switch with signal-clock walk-off," J. Lightwave Technol. 12, 1648-1659 (1994).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (5)

O. Leclerc, B. Lavigne, D. Chiaroni, and E. Desurvire, "All-optical regeneration: Principles and WDM implementation," in Optical Fiber Telecommunications IV A, Components, I. Kaminow and T. Li, eds. (Academic Press, 2002), pp. 732-783.

F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, C. Schubert, "All-optical amplitude noise suppression of 160-Gb/s OOK and DPSK data signals using a parametric fiber switch," 2007 Optical Fiber Communication Conference, paper OThB3 (2007).

S. Ferber, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, L. Molle, K. Habel, M. Rohde, H. G. Weber, F. Futami, and S. Watanabe, "160Gb/s regenerating conversion node," 2004 Optical Fiber Communication Conference, paper ThT2 (2004).

M. Yagi, S. Satomi, and S. Ryu, "All-optical 2R-regenerative interconnection node for DPSK polarization-division multiplexed systems," 2007 Optical Fiber Communication Conference, paper OThR3 (2007).

C. Schmidt-Langhorst, R. Ludwig, M. Galili, B. Huettl, F. Futami, S. Watanabe, and C. Schubert, "160 Gbit/s all-optical OOK to DPSK in-line format conversion," 2006 European Conference on Optical Communication, paper Th 4.3.5 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of the regenerator for short-pulse DPSK signals.

Fig. 2.
Fig. 2.

Setup for the performance measurement of the regenerator.

Fig. 3.
Fig. 3.

BER performance of the system with (solid curves) or without (dashed curves) inserting the regenerator; Signal before the regenerator is mainly degraded by nonlinearity in the DDM fiber. (a) BER measured before the 2nd span with Ps=8dBm (circles), 9.5dBm (triangles), and 11dBm (squares). Dotted curve shows the back-to-back BER. (b) BER measured after the 2nd span with ATT2=8dB (circles), 14dB (triangles), and 18dB (squares). Ps is fixed at 9.5dBm.

Fig. 4.
Fig. 4.

BER performance of the system with (solid curves) or without (dashed curves) inserting the regenerator; Signal before the regenerator is degraded by ASE in the 1st span. (a) BER measured before the 2nd span with ATT1=8dB (circles), 12dB (triangles), and 16dB (squares). Dotted curve shows the back-to-back BER. (b) BER measured after the 2nd span with ATT2=12dB (circles), 16dB (triangles), and 20dB (squares). ATT1 is fixed at 12dB.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E DI 2 = { A s 2 + A s ( Δ A n + Δ A n 1 ) ( ϕ n ϕ n 1 = π ) 0 ( ϕ n ϕ n 1 = 0 )
E out = A clock exp { iG [ A s 2 + r A s ( Δ A n + Δ A n 1 ) ] } ,

Metrics