Abstract

A light scattering model under the Rayleigh-Gans-Debye approximation has been developed for polycristalline alumina. The model states that transmittance of dense alumina ceramics basically depends not only on the maximum grain size but also on the preferential orientation of their c-axis, or texture. The effect of texture in transparency has been experimentally measured on several dense alumina samples with different grain size and compared to that obtained from x-ray Rietveld refinements with a very good agreement. The Rayleigh-Gans-Debye approximation also allows to represent optical data in a very simple way (logarithm of transmittance vs. the inverse of the wavelength square). Using these variables, a straight line is obtained for the Rayleigh-Gans-Debye approximation, its slope being proportional to the maximum grain size and textural parameter. Deviation from this law implies the presence of pores or grain of extremely large size.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wei, "Transparent ceramic lamp envelope materials," J. Phys. D 38, 3057-3065 (2005).
    [CrossRef]
  2. U. Anselmi-Tamburini, J. N. Woolman, and Z. A. Munir, "Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering," Adv. Funct. Mater. 17, 3267-3273 (2007).
    [CrossRef]
  3. R. Apetz and M. P. B. van Bruggen, "Transparent alumina: A light-scattering model," J. Amer. Ceram. Soc. 86, 480-486 (2003).
    [CrossRef]
  4. G. Bernard-Granger, C. Guizard, and A. Addad, "Sintering behavior and optical properties of yttria," J. Amer. Ceram. Soc. 90, 2698-2702 (2007).
    [CrossRef]
  5. R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
    [CrossRef]
  6. N. Frage, S. Cohen, S. Meir, S. Kalabukhov, and M. P. Dariel, "Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel," J. of Mater. Sci. 42, 3273-3275 (2007).
    [CrossRef]
  7. A. Krell and J. Klimke, "Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina," J. Amer. Ceram. Soc. 89, 1985-1992 (2006).
    [CrossRef]
  8. J. G. Li and Y. P. Ye, "Densification and grain growth of Al2O3 nanoceramics during pressureless sintering," J. Amer. Ceram. Soc. 89, 139-143 (2006).
    [CrossRef]
  9. Z. J. Shen, M. Johnsson, Z. Zhao, and M. Nygren, "Spark plasma sintering of alumina," J. Amer. Ceram. Soc. 85, 1921-1927 (2002).
    [CrossRef]
  10. V. V. Srdic, M. Winterer, and H. Hahn, "Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis," J. Amer. Ceram. Soc. 83, 729-736 (2000).
    [CrossRef]
  11. Y. T. O, J. B. Koo, K. J. Hong, J. S. Park, and D. C. Shin, "Effect of grain size on transmittance and mechanical strength of sintered alumina," Mat. Sci. Eng. A 374, 191-195 (2004).
    [CrossRef]
  12. J. Peelen and R. Metselaar, "Light-scattering by pores in polycrystalline materials-transmission properties of alumina" J. Appl. Phys. 45, 216-220 (1974).
    [CrossRef]
  13. T. Kappen, "Status quo of ceramic material for metal halide discharge lamps," J. Phys. D 38, 3033-3039 (2005).
    [CrossRef]
  14. A. Jones, "Light scattering for particle characterization," Prog. Ener, Comb. Sci. 25, 1-53 (1999).
    [CrossRef]
  15. J. Holoubek, "Simple representation of small-angle light-scattering from an anisotropic sphere" J. Polymer Sci. A-2 10, 1461 (1972).
    [CrossRef]
  16. Y. L. Geng, X.-B. Wu, L. W. Li, and B. R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Phys. Rev. E,  70056609 (2004).
    [CrossRef]
  17. R. Haracz, L. D. Cohen and A. Cohen, "Scattering of linearly polarized-light from randomly oriented cylinders and spheroids," J. Appl. Phys. 58, 3322-3327 (1985).
    [CrossRef]
  18. L. Turner, "Rayleigh-Gans-Born light-Scattering by ensembles of randomly oriented anisotropic particles," Appl. Opt. 12, 1085-1090 (1973).
    [CrossRef] [PubMed]
  19. G. Bernard-Granger and C. Guizard, "Influence of MgO or TiO2 doping on the sintering path and on the optical properties of a submicronic alumina material," Scripta Mater. 56, 983-986 (2007).
    [CrossRef]
  20. D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, A. K. Mukherjee, "Optically transparent polycrystalline Al2O3 produced by spark plasma sintering" J. Amer. Ceram. Soc. 91, 151-154 (2008).
    [CrossRef]
  21. G. Bernard-Granger, C. Guizard, and A. Addad, "Influence of co-doping on the sintering path and on the optical properties of a submicronic alumina material," J. Amer. Ceram. Soc. 91, 1703-1706 (2008).
    [CrossRef]
  22. D. Chakravarty, S. Bysakh, K. Muraleedharan, T.N. Rao, R. Sundaresan, "Spark plasma sintering of magnesia-doped alumina with high hardness and fracture toughness," J. Amer. Ceram. Soc. 91, 203-208 (2008).
    [CrossRef]
  23. H. C. H. C. v. d. Hulst, Light scattering by small particles.
  24. W. Dollase, "Correction of intensities for preferred orientation in powder diffractometry-application of the March model," J. Appl. Crystal. 19, 267-272 (1986).
    [CrossRef]
  25. E. Guilmeau, D. Chateigner, T. S. Suzuki, Y. Sakka, C. Henrist, and B. Ouladdiaf, "Rietveld Texture Analysis of Alumina Ceramics by Neutron Diffraction," Chem. Mater. 17, 102-106 (2005).
    [CrossRef]
  26. P. P. Beckmann and A. Spizzichino, The scattering of electromagnetic waves from rough surfaces. Ed. Artech House Radar Library, Norwood, MA, USA, (1987)
  27. C. Pecharroman, F. Gracíìa, J. P. Holgado, M. OcanÞa, A.R. Gonzaìlez-Elipe, J. Bassas, J. Santiso, A. Figueras "Determination of texture by infrared spectroscopy in titanium oxide-anatase thin films,"J. Appl. Phys. 93, 4634-4645 (2003).
    [CrossRef]
  28. M. Ocaña, C. Pecharromaìn, F. Gracíìa, J. P. Holgado, and A. R. Gonzaìlez-Elipe. "Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy," Thin Solid Films 515, 1585-1591 (2006).
    [CrossRef]
  29. W. Swiatnicki, S. Lartigue-Korinek, and J. Y. Laval"Grain-Boundary structure and intergranular segregation in Al2O3," Acta Metal.Mater. 43, 795-805 (1995).
    [CrossRef]
  30. A. Kebbede, J. Parai, and A. H. Carim, "Anisotropic grain growth in alpha-Al2O3 with SiO2 and TiO2 additions," J. Amer. Ceram. Soc. 83, 2845-2851 (2000).
    [CrossRef]
  31. Y. Sakka, T. S. Suzuki, and T. Uchikoshi "Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering," J. Eur. Ceram. Soc. 28, 935-942 (2008).
    [CrossRef]

2008 (4)

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, A. K. Mukherjee, "Optically transparent polycrystalline Al2O3 produced by spark plasma sintering" J. Amer. Ceram. Soc. 91, 151-154 (2008).
[CrossRef]

G. Bernard-Granger, C. Guizard, and A. Addad, "Influence of co-doping on the sintering path and on the optical properties of a submicronic alumina material," J. Amer. Ceram. Soc. 91, 1703-1706 (2008).
[CrossRef]

D. Chakravarty, S. Bysakh, K. Muraleedharan, T.N. Rao, R. Sundaresan, "Spark plasma sintering of magnesia-doped alumina with high hardness and fracture toughness," J. Amer. Ceram. Soc. 91, 203-208 (2008).
[CrossRef]

Y. Sakka, T. S. Suzuki, and T. Uchikoshi "Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering," J. Eur. Ceram. Soc. 28, 935-942 (2008).
[CrossRef]

2007 (5)

G. Bernard-Granger and C. Guizard, "Influence of MgO or TiO2 doping on the sintering path and on the optical properties of a submicronic alumina material," Scripta Mater. 56, 983-986 (2007).
[CrossRef]

G. Bernard-Granger, C. Guizard, and A. Addad, "Sintering behavior and optical properties of yttria," J. Amer. Ceram. Soc. 90, 2698-2702 (2007).
[CrossRef]

R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
[CrossRef]

N. Frage, S. Cohen, S. Meir, S. Kalabukhov, and M. P. Dariel, "Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel," J. of Mater. Sci. 42, 3273-3275 (2007).
[CrossRef]

U. Anselmi-Tamburini, J. N. Woolman, and Z. A. Munir, "Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering," Adv. Funct. Mater. 17, 3267-3273 (2007).
[CrossRef]

2006 (3)

A. Krell and J. Klimke, "Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina," J. Amer. Ceram. Soc. 89, 1985-1992 (2006).
[CrossRef]

J. G. Li and Y. P. Ye, "Densification and grain growth of Al2O3 nanoceramics during pressureless sintering," J. Amer. Ceram. Soc. 89, 139-143 (2006).
[CrossRef]

M. Ocaña, C. Pecharromaìn, F. Gracíìa, J. P. Holgado, and A. R. Gonzaìlez-Elipe. "Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy," Thin Solid Films 515, 1585-1591 (2006).
[CrossRef]

2005 (3)

G. Wei, "Transparent ceramic lamp envelope materials," J. Phys. D 38, 3057-3065 (2005).
[CrossRef]

E. Guilmeau, D. Chateigner, T. S. Suzuki, Y. Sakka, C. Henrist, and B. Ouladdiaf, "Rietveld Texture Analysis of Alumina Ceramics by Neutron Diffraction," Chem. Mater. 17, 102-106 (2005).
[CrossRef]

T. Kappen, "Status quo of ceramic material for metal halide discharge lamps," J. Phys. D 38, 3033-3039 (2005).
[CrossRef]

2004 (2)

Y. L. Geng, X.-B. Wu, L. W. Li, and B. R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Phys. Rev. E,  70056609 (2004).
[CrossRef]

Y. T. O, J. B. Koo, K. J. Hong, J. S. Park, and D. C. Shin, "Effect of grain size on transmittance and mechanical strength of sintered alumina," Mat. Sci. Eng. A 374, 191-195 (2004).
[CrossRef]

2003 (2)

R. Apetz and M. P. B. van Bruggen, "Transparent alumina: A light-scattering model," J. Amer. Ceram. Soc. 86, 480-486 (2003).
[CrossRef]

C. Pecharroman, F. Gracíìa, J. P. Holgado, M. OcanÞa, A.R. Gonzaìlez-Elipe, J. Bassas, J. Santiso, A. Figueras "Determination of texture by infrared spectroscopy in titanium oxide-anatase thin films,"J. Appl. Phys. 93, 4634-4645 (2003).
[CrossRef]

2002 (1)

Z. J. Shen, M. Johnsson, Z. Zhao, and M. Nygren, "Spark plasma sintering of alumina," J. Amer. Ceram. Soc. 85, 1921-1927 (2002).
[CrossRef]

2000 (2)

V. V. Srdic, M. Winterer, and H. Hahn, "Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis," J. Amer. Ceram. Soc. 83, 729-736 (2000).
[CrossRef]

A. Kebbede, J. Parai, and A. H. Carim, "Anisotropic grain growth in alpha-Al2O3 with SiO2 and TiO2 additions," J. Amer. Ceram. Soc. 83, 2845-2851 (2000).
[CrossRef]

1999 (1)

A. Jones, "Light scattering for particle characterization," Prog. Ener, Comb. Sci. 25, 1-53 (1999).
[CrossRef]

1995 (1)

W. Swiatnicki, S. Lartigue-Korinek, and J. Y. Laval"Grain-Boundary structure and intergranular segregation in Al2O3," Acta Metal.Mater. 43, 795-805 (1995).
[CrossRef]

1986 (1)

W. Dollase, "Correction of intensities for preferred orientation in powder diffractometry-application of the March model," J. Appl. Crystal. 19, 267-272 (1986).
[CrossRef]

1985 (1)

R. Haracz, L. D. Cohen and A. Cohen, "Scattering of linearly polarized-light from randomly oriented cylinders and spheroids," J. Appl. Phys. 58, 3322-3327 (1985).
[CrossRef]

1974 (1)

J. Peelen and R. Metselaar, "Light-scattering by pores in polycrystalline materials-transmission properties of alumina" J. Appl. Phys. 45, 216-220 (1974).
[CrossRef]

1973 (1)

Addad, A.

G. Bernard-Granger, C. Guizard, and A. Addad, "Influence of co-doping on the sintering path and on the optical properties of a submicronic alumina material," J. Amer. Ceram. Soc. 91, 1703-1706 (2008).
[CrossRef]

G. Bernard-Granger, C. Guizard, and A. Addad, "Sintering behavior and optical properties of yttria," J. Amer. Ceram. Soc. 90, 2698-2702 (2007).
[CrossRef]

Anselmi-Tamburini, U.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, A. K. Mukherjee, "Optically transparent polycrystalline Al2O3 produced by spark plasma sintering" J. Amer. Ceram. Soc. 91, 151-154 (2008).
[CrossRef]

U. Anselmi-Tamburini, J. N. Woolman, and Z. A. Munir, "Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering," Adv. Funct. Mater. 17, 3267-3273 (2007).
[CrossRef]

Apetz, R.

R. Apetz and M. P. B. van Bruggen, "Transparent alumina: A light-scattering model," J. Amer. Ceram. Soc. 86, 480-486 (2003).
[CrossRef]

Bernard-Granger, G.

G. Bernard-Granger, C. Guizard, and A. Addad, "Influence of co-doping on the sintering path and on the optical properties of a submicronic alumina material," J. Amer. Ceram. Soc. 91, 1703-1706 (2008).
[CrossRef]

G. Bernard-Granger, C. Guizard, and A. Addad, "Sintering behavior and optical properties of yttria," J. Amer. Ceram. Soc. 90, 2698-2702 (2007).
[CrossRef]

G. Bernard-Granger and C. Guizard, "Influence of MgO or TiO2 doping on the sintering path and on the optical properties of a submicronic alumina material," Scripta Mater. 56, 983-986 (2007).
[CrossRef]

Bysakh, S.

D. Chakravarty, S. Bysakh, K. Muraleedharan, T.N. Rao, R. Sundaresan, "Spark plasma sintering of magnesia-doped alumina with high hardness and fracture toughness," J. Amer. Ceram. Soc. 91, 203-208 (2008).
[CrossRef]

Carim, A. H.

A. Kebbede, J. Parai, and A. H. Carim, "Anisotropic grain growth in alpha-Al2O3 with SiO2 and TiO2 additions," J. Amer. Ceram. Soc. 83, 2845-2851 (2000).
[CrossRef]

Chakravarty, D.

D. Chakravarty, S. Bysakh, K. Muraleedharan, T.N. Rao, R. Sundaresan, "Spark plasma sintering of magnesia-doped alumina with high hardness and fracture toughness," J. Amer. Ceram. Soc. 91, 203-208 (2008).
[CrossRef]

Chateigner, D.

E. Guilmeau, D. Chateigner, T. S. Suzuki, Y. Sakka, C. Henrist, and B. Ouladdiaf, "Rietveld Texture Analysis of Alumina Ceramics by Neutron Diffraction," Chem. Mater. 17, 102-106 (2005).
[CrossRef]

Cohen, A.

R. Haracz, L. D. Cohen and A. Cohen, "Scattering of linearly polarized-light from randomly oriented cylinders and spheroids," J. Appl. Phys. 58, 3322-3327 (1985).
[CrossRef]

Cohen, L. D.

R. Haracz, L. D. Cohen and A. Cohen, "Scattering of linearly polarized-light from randomly oriented cylinders and spheroids," J. Appl. Phys. 58, 3322-3327 (1985).
[CrossRef]

Cohen, S.

N. Frage, S. Cohen, S. Meir, S. Kalabukhov, and M. P. Dariel, "Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel," J. of Mater. Sci. 42, 3273-3275 (2007).
[CrossRef]

Dariel, M. P.

N. Frage, S. Cohen, S. Meir, S. Kalabukhov, and M. P. Dariel, "Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel," J. of Mater. Sci. 42, 3273-3275 (2007).
[CrossRef]

Dollase, W.

W. Dollase, "Correction of intensities for preferred orientation in powder diffractometry-application of the March model," J. Appl. Crystal. 19, 267-272 (1986).
[CrossRef]

Fedyk, R.

R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
[CrossRef]

Frage, N.

N. Frage, S. Cohen, S. Meir, S. Kalabukhov, and M. P. Dariel, "Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel," J. of Mater. Sci. 42, 3273-3275 (2007).
[CrossRef]

Geng, Y. L.

Y. L. Geng, X.-B. Wu, L. W. Li, and B. R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Phys. Rev. E,  70056609 (2004).
[CrossRef]

Gierlotka, S.

R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
[CrossRef]

Gonzaìlez-Elipe, A. R.

M. Ocaña, C. Pecharromaìn, F. Gracíìa, J. P. Holgado, and A. R. Gonzaìlez-Elipe. "Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy," Thin Solid Films 515, 1585-1591 (2006).
[CrossRef]

Gracíìa, F.

M. Ocaña, C. Pecharromaìn, F. Gracíìa, J. P. Holgado, and A. R. Gonzaìlez-Elipe. "Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy," Thin Solid Films 515, 1585-1591 (2006).
[CrossRef]

C. Pecharroman, F. Gracíìa, J. P. Holgado, M. OcanÞa, A.R. Gonzaìlez-Elipe, J. Bassas, J. Santiso, A. Figueras "Determination of texture by infrared spectroscopy in titanium oxide-anatase thin films,"J. Appl. Phys. 93, 4634-4645 (2003).
[CrossRef]

Grzanka, E.

R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
[CrossRef]

Guan, B. R.

Y. L. Geng, X.-B. Wu, L. W. Li, and B. R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Phys. Rev. E,  70056609 (2004).
[CrossRef]

Guilmeau, E.

E. Guilmeau, D. Chateigner, T. S. Suzuki, Y. Sakka, C. Henrist, and B. Ouladdiaf, "Rietveld Texture Analysis of Alumina Ceramics by Neutron Diffraction," Chem. Mater. 17, 102-106 (2005).
[CrossRef]

Guizard, C.

G. Bernard-Granger, C. Guizard, and A. Addad, "Influence of co-doping on the sintering path and on the optical properties of a submicronic alumina material," J. Amer. Ceram. Soc. 91, 1703-1706 (2008).
[CrossRef]

G. Bernard-Granger, C. Guizard, and A. Addad, "Sintering behavior and optical properties of yttria," J. Amer. Ceram. Soc. 90, 2698-2702 (2007).
[CrossRef]

G. Bernard-Granger and C. Guizard, "Influence of MgO or TiO2 doping on the sintering path and on the optical properties of a submicronic alumina material," Scripta Mater. 56, 983-986 (2007).
[CrossRef]

Hahn, H.

V. V. Srdic, M. Winterer, and H. Hahn, "Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis," J. Amer. Ceram. Soc. 83, 729-736 (2000).
[CrossRef]

Haracz, R.

R. Haracz, L. D. Cohen and A. Cohen, "Scattering of linearly polarized-light from randomly oriented cylinders and spheroids," J. Appl. Phys. 58, 3322-3327 (1985).
[CrossRef]

Henrist, C.

E. Guilmeau, D. Chateigner, T. S. Suzuki, Y. Sakka, C. Henrist, and B. Ouladdiaf, "Rietveld Texture Analysis of Alumina Ceramics by Neutron Diffraction," Chem. Mater. 17, 102-106 (2005).
[CrossRef]

Holgado, J. P.

M. Ocaña, C. Pecharromaìn, F. Gracíìa, J. P. Holgado, and A. R. Gonzaìlez-Elipe. "Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy," Thin Solid Films 515, 1585-1591 (2006).
[CrossRef]

C. Pecharroman, F. Gracíìa, J. P. Holgado, M. OcanÞa, A.R. Gonzaìlez-Elipe, J. Bassas, J. Santiso, A. Figueras "Determination of texture by infrared spectroscopy in titanium oxide-anatase thin films,"J. Appl. Phys. 93, 4634-4645 (2003).
[CrossRef]

Holoubek, J.

J. Holoubek, "Simple representation of small-angle light-scattering from an anisotropic sphere" J. Polymer Sci. A-2 10, 1461 (1972).
[CrossRef]

Hreniak, D.

R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
[CrossRef]

Hulbert, D. M.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, A. K. Mukherjee, "Optically transparent polycrystalline Al2O3 produced by spark plasma sintering" J. Amer. Ceram. Soc. 91, 151-154 (2008).
[CrossRef]

Jiang, D.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, A. K. Mukherjee, "Optically transparent polycrystalline Al2O3 produced by spark plasma sintering" J. Amer. Ceram. Soc. 91, 151-154 (2008).
[CrossRef]

Johnsson, M.

Z. J. Shen, M. Johnsson, Z. Zhao, and M. Nygren, "Spark plasma sintering of alumina," J. Amer. Ceram. Soc. 85, 1921-1927 (2002).
[CrossRef]

Jones, A.

A. Jones, "Light scattering for particle characterization," Prog. Ener, Comb. Sci. 25, 1-53 (1999).
[CrossRef]

Kalabukhov, S.

N. Frage, S. Cohen, S. Meir, S. Kalabukhov, and M. P. Dariel, "Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel," J. of Mater. Sci. 42, 3273-3275 (2007).
[CrossRef]

Kappen, T.

T. Kappen, "Status quo of ceramic material for metal halide discharge lamps," J. Phys. D 38, 3033-3039 (2005).
[CrossRef]

Kebbede, A.

A. Kebbede, J. Parai, and A. H. Carim, "Anisotropic grain growth in alpha-Al2O3 with SiO2 and TiO2 additions," J. Amer. Ceram. Soc. 83, 2845-2851 (2000).
[CrossRef]

Klimke, J.

A. Krell and J. Klimke, "Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina," J. Amer. Ceram. Soc. 89, 1985-1992 (2006).
[CrossRef]

Krell, A.

A. Krell and J. Klimke, "Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina," J. Amer. Ceram. Soc. 89, 1985-1992 (2006).
[CrossRef]

Land, D.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, A. K. Mukherjee, "Optically transparent polycrystalline Al2O3 produced by spark plasma sintering" J. Amer. Ceram. Soc. 91, 151-154 (2008).
[CrossRef]

Lartigue-Korinek, S.

W. Swiatnicki, S. Lartigue-Korinek, and J. Y. Laval"Grain-Boundary structure and intergranular segregation in Al2O3," Acta Metal.Mater. 43, 795-805 (1995).
[CrossRef]

Laval, J. Y.

W. Swiatnicki, S. Lartigue-Korinek, and J. Y. Laval"Grain-Boundary structure and intergranular segregation in Al2O3," Acta Metal.Mater. 43, 795-805 (1995).
[CrossRef]

Li, J. G.

J. G. Li and Y. P. Ye, "Densification and grain growth of Al2O3 nanoceramics during pressureless sintering," J. Amer. Ceram. Soc. 89, 139-143 (2006).
[CrossRef]

Li, L. W.

Y. L. Geng, X.-B. Wu, L. W. Li, and B. R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Phys. Rev. E,  70056609 (2004).
[CrossRef]

Lojkowski, W.

R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
[CrossRef]

Matysiak, H.

R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
[CrossRef]

Mazur, P.

R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
[CrossRef]

Meir, S.

N. Frage, S. Cohen, S. Meir, S. Kalabukhov, and M. P. Dariel, "Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel," J. of Mater. Sci. 42, 3273-3275 (2007).
[CrossRef]

Metselaar, R.

J. Peelen and R. Metselaar, "Light-scattering by pores in polycrystalline materials-transmission properties of alumina" J. Appl. Phys. 45, 216-220 (1974).
[CrossRef]

Mukherjee, A. K.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, A. K. Mukherjee, "Optically transparent polycrystalline Al2O3 produced by spark plasma sintering" J. Amer. Ceram. Soc. 91, 151-154 (2008).
[CrossRef]

Munir, Z. A.

U. Anselmi-Tamburini, J. N. Woolman, and Z. A. Munir, "Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering," Adv. Funct. Mater. 17, 3267-3273 (2007).
[CrossRef]

Muraleedharan, K.

D. Chakravarty, S. Bysakh, K. Muraleedharan, T.N. Rao, R. Sundaresan, "Spark plasma sintering of magnesia-doped alumina with high hardness and fracture toughness," J. Amer. Ceram. Soc. 91, 203-208 (2008).
[CrossRef]

Ng, T.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, A. K. Mukherjee, "Optically transparent polycrystalline Al2O3 produced by spark plasma sintering" J. Amer. Ceram. Soc. 91, 151-154 (2008).
[CrossRef]

Nygren, M.

Z. J. Shen, M. Johnsson, Z. Zhao, and M. Nygren, "Spark plasma sintering of alumina," J. Amer. Ceram. Soc. 85, 1921-1927 (2002).
[CrossRef]

Ocaña, M.

M. Ocaña, C. Pecharromaìn, F. Gracíìa, J. P. Holgado, and A. R. Gonzaìlez-Elipe. "Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy," Thin Solid Films 515, 1585-1591 (2006).
[CrossRef]

Ouladdiaf, B.

E. Guilmeau, D. Chateigner, T. S. Suzuki, Y. Sakka, C. Henrist, and B. Ouladdiaf, "Rietveld Texture Analysis of Alumina Ceramics by Neutron Diffraction," Chem. Mater. 17, 102-106 (2005).
[CrossRef]

Parai, J.

A. Kebbede, J. Parai, and A. H. Carim, "Anisotropic grain growth in alpha-Al2O3 with SiO2 and TiO2 additions," J. Amer. Ceram. Soc. 83, 2845-2851 (2000).
[CrossRef]

Pecharromaìn, C.

M. Ocaña, C. Pecharromaìn, F. Gracíìa, J. P. Holgado, and A. R. Gonzaìlez-Elipe. "Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy," Thin Solid Films 515, 1585-1591 (2006).
[CrossRef]

Pecharroman, C.

C. Pecharroman, F. Gracíìa, J. P. Holgado, M. OcanÞa, A.R. Gonzaìlez-Elipe, J. Bassas, J. Santiso, A. Figueras "Determination of texture by infrared spectroscopy in titanium oxide-anatase thin films,"J. Appl. Phys. 93, 4634-4645 (2003).
[CrossRef]

Peelen, J.

J. Peelen and R. Metselaar, "Light-scattering by pores in polycrystalline materials-transmission properties of alumina" J. Appl. Phys. 45, 216-220 (1974).
[CrossRef]

Rao, T.N.

D. Chakravarty, S. Bysakh, K. Muraleedharan, T.N. Rao, R. Sundaresan, "Spark plasma sintering of magnesia-doped alumina with high hardness and fracture toughness," J. Amer. Ceram. Soc. 91, 203-208 (2008).
[CrossRef]

Sakka, Y.

Y. Sakka, T. S. Suzuki, and T. Uchikoshi "Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering," J. Eur. Ceram. Soc. 28, 935-942 (2008).
[CrossRef]

E. Guilmeau, D. Chateigner, T. S. Suzuki, Y. Sakka, C. Henrist, and B. Ouladdiaf, "Rietveld Texture Analysis of Alumina Ceramics by Neutron Diffraction," Chem. Mater. 17, 102-106 (2005).
[CrossRef]

Shen, Z. J.

Z. J. Shen, M. Johnsson, Z. Zhao, and M. Nygren, "Spark plasma sintering of alumina," J. Amer. Ceram. Soc. 85, 1921-1927 (2002).
[CrossRef]

Srdic, V. V.

V. V. Srdic, M. Winterer, and H. Hahn, "Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis," J. Amer. Ceram. Soc. 83, 729-736 (2000).
[CrossRef]

Strek, W.

R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
[CrossRef]

Sundaresan, R.

D. Chakravarty, S. Bysakh, K. Muraleedharan, T.N. Rao, R. Sundaresan, "Spark plasma sintering of magnesia-doped alumina with high hardness and fracture toughness," J. Amer. Ceram. Soc. 91, 203-208 (2008).
[CrossRef]

Suzuki, T. S.

Y. Sakka, T. S. Suzuki, and T. Uchikoshi "Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering," J. Eur. Ceram. Soc. 28, 935-942 (2008).
[CrossRef]

E. Guilmeau, D. Chateigner, T. S. Suzuki, Y. Sakka, C. Henrist, and B. Ouladdiaf, "Rietveld Texture Analysis of Alumina Ceramics by Neutron Diffraction," Chem. Mater. 17, 102-106 (2005).
[CrossRef]

Swiatnicki, W.

W. Swiatnicki, S. Lartigue-Korinek, and J. Y. Laval"Grain-Boundary structure and intergranular segregation in Al2O3," Acta Metal.Mater. 43, 795-805 (1995).
[CrossRef]

Turner, L.

Uchikoshi, T.

Y. Sakka, T. S. Suzuki, and T. Uchikoshi "Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering," J. Eur. Ceram. Soc. 28, 935-942 (2008).
[CrossRef]

van Bruggen, M. P. B.

R. Apetz and M. P. B. van Bruggen, "Transparent alumina: A light-scattering model," J. Amer. Ceram. Soc. 86, 480-486 (2003).
[CrossRef]

Wei, G.

G. Wei, "Transparent ceramic lamp envelope materials," J. Phys. D 38, 3057-3065 (2005).
[CrossRef]

Winterer, M.

V. V. Srdic, M. Winterer, and H. Hahn, "Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis," J. Amer. Ceram. Soc. 83, 729-736 (2000).
[CrossRef]

Woolman, J. N.

U. Anselmi-Tamburini, J. N. Woolman, and Z. A. Munir, "Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering," Adv. Funct. Mater. 17, 3267-3273 (2007).
[CrossRef]

Wu, X.-B.

Y. L. Geng, X.-B. Wu, L. W. Li, and B. R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Phys. Rev. E,  70056609 (2004).
[CrossRef]

Ye, Y. P.

J. G. Li and Y. P. Ye, "Densification and grain growth of Al2O3 nanoceramics during pressureless sintering," J. Amer. Ceram. Soc. 89, 139-143 (2006).
[CrossRef]

Zhao, Z.

Z. J. Shen, M. Johnsson, Z. Zhao, and M. Nygren, "Spark plasma sintering of alumina," J. Amer. Ceram. Soc. 85, 1921-1927 (2002).
[CrossRef]

Adv. Funct. Mater. (1)

U. Anselmi-Tamburini, J. N. Woolman, and Z. A. Munir, "Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering," Adv. Funct. Mater. 17, 3267-3273 (2007).
[CrossRef]

Appl. Opt. (1)

Chem. Mater. (1)

E. Guilmeau, D. Chateigner, T. S. Suzuki, Y. Sakka, C. Henrist, and B. Ouladdiaf, "Rietveld Texture Analysis of Alumina Ceramics by Neutron Diffraction," Chem. Mater. 17, 102-106 (2005).
[CrossRef]

Comb. Sci. (1)

A. Jones, "Light scattering for particle characterization," Prog. Ener, Comb. Sci. 25, 1-53 (1999).
[CrossRef]

J. Amer. Ceram. Soc. (10)

R. Apetz and M. P. B. van Bruggen, "Transparent alumina: A light-scattering model," J. Amer. Ceram. Soc. 86, 480-486 (2003).
[CrossRef]

G. Bernard-Granger, C. Guizard, and A. Addad, "Sintering behavior and optical properties of yttria," J. Amer. Ceram. Soc. 90, 2698-2702 (2007).
[CrossRef]

A. Krell and J. Klimke, "Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina," J. Amer. Ceram. Soc. 89, 1985-1992 (2006).
[CrossRef]

J. G. Li and Y. P. Ye, "Densification and grain growth of Al2O3 nanoceramics during pressureless sintering," J. Amer. Ceram. Soc. 89, 139-143 (2006).
[CrossRef]

Z. J. Shen, M. Johnsson, Z. Zhao, and M. Nygren, "Spark plasma sintering of alumina," J. Amer. Ceram. Soc. 85, 1921-1927 (2002).
[CrossRef]

V. V. Srdic, M. Winterer, and H. Hahn, "Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis," J. Amer. Ceram. Soc. 83, 729-736 (2000).
[CrossRef]

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, A. K. Mukherjee, "Optically transparent polycrystalline Al2O3 produced by spark plasma sintering" J. Amer. Ceram. Soc. 91, 151-154 (2008).
[CrossRef]

G. Bernard-Granger, C. Guizard, and A. Addad, "Influence of co-doping on the sintering path and on the optical properties of a submicronic alumina material," J. Amer. Ceram. Soc. 91, 1703-1706 (2008).
[CrossRef]

D. Chakravarty, S. Bysakh, K. Muraleedharan, T.N. Rao, R. Sundaresan, "Spark plasma sintering of magnesia-doped alumina with high hardness and fracture toughness," J. Amer. Ceram. Soc. 91, 203-208 (2008).
[CrossRef]

A. Kebbede, J. Parai, and A. H. Carim, "Anisotropic grain growth in alpha-Al2O3 with SiO2 and TiO2 additions," J. Amer. Ceram. Soc. 83, 2845-2851 (2000).
[CrossRef]

J. Appl. Crystal. (1)

W. Dollase, "Correction of intensities for preferred orientation in powder diffractometry-application of the March model," J. Appl. Crystal. 19, 267-272 (1986).
[CrossRef]

J. Appl. Phys. (3)

C. Pecharroman, F. Gracíìa, J. P. Holgado, M. OcanÞa, A.R. Gonzaìlez-Elipe, J. Bassas, J. Santiso, A. Figueras "Determination of texture by infrared spectroscopy in titanium oxide-anatase thin films,"J. Appl. Phys. 93, 4634-4645 (2003).
[CrossRef]

R. Haracz, L. D. Cohen and A. Cohen, "Scattering of linearly polarized-light from randomly oriented cylinders and spheroids," J. Appl. Phys. 58, 3322-3327 (1985).
[CrossRef]

J. Peelen and R. Metselaar, "Light-scattering by pores in polycrystalline materials-transmission properties of alumina" J. Appl. Phys. 45, 216-220 (1974).
[CrossRef]

J. Eur. Ceram. Soc. (1)

Y. Sakka, T. S. Suzuki, and T. Uchikoshi "Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering," J. Eur. Ceram. Soc. 28, 935-942 (2008).
[CrossRef]

J. of Mater. Sci. (1)

N. Frage, S. Cohen, S. Meir, S. Kalabukhov, and M. P. Dariel, "Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel," J. of Mater. Sci. 42, 3273-3275 (2007).
[CrossRef]

J. Phys. D (2)

G. Wei, "Transparent ceramic lamp envelope materials," J. Phys. D 38, 3057-3065 (2005).
[CrossRef]

T. Kappen, "Status quo of ceramic material for metal halide discharge lamps," J. Phys. D 38, 3033-3039 (2005).
[CrossRef]

Mat. Sci. Eng. A (1)

Y. T. O, J. B. Koo, K. J. Hong, J. S. Park, and D. C. Shin, "Effect of grain size on transmittance and mechanical strength of sintered alumina," Mat. Sci. Eng. A 374, 191-195 (2004).
[CrossRef]

Mater. (1)

W. Swiatnicki, S. Lartigue-Korinek, and J. Y. Laval"Grain-Boundary structure and intergranular segregation in Al2O3," Acta Metal.Mater. 43, 795-805 (1995).
[CrossRef]

Opt. Mater. (1)

R. Fedyk, D. Hreniak, W. Lojkowski, W. Strek, H. Matysiak, E. Grzanka, S. Gierlotka, and P. Mazur, "Method of preparation and structural properties of transparent YAG nanoceramics," Opt. Mater. 29, 1252-1257 (2007).
[CrossRef]

Phys. Rev. E (1)

Y. L. Geng, X.-B. Wu, L. W. Li, and B. R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Phys. Rev. E,  70056609 (2004).
[CrossRef]

Scripta Mater. (1)

G. Bernard-Granger and C. Guizard, "Influence of MgO or TiO2 doping on the sintering path and on the optical properties of a submicronic alumina material," Scripta Mater. 56, 983-986 (2007).
[CrossRef]

Thin Solid Films (1)

M. Ocaña, C. Pecharromaìn, F. Gracíìa, J. P. Holgado, and A. R. Gonzaìlez-Elipe. "Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy," Thin Solid Films 515, 1585-1591 (2006).
[CrossRef]

Other (3)

P. P. Beckmann and A. Spizzichino, The scattering of electromagnetic waves from rough surfaces. Ed. Artech House Radar Library, Norwood, MA, USA, (1987)

H. C. H. C. v. d. Hulst, Light scattering by small particles.

J. Holoubek, "Simple representation of small-angle light-scattering from an anisotropic sphere" J. Polymer Sci. A-2 10, 1461 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Geometry of the incident field (E i, H i), anisotropic sphere, with refractive index ne and no and scattered beam (E s, H s).

Fig. 2.
Fig. 2.

Textural function α(ξ) that appear in the RGD scattering approximation vs. the preferential textural angle ξ.

Fig. 3.
Fig. 3.

(a) Experimental optical transmittance vs. wavelength for the four considered samples: 1) sintered at 1400° C for 2h at vacuum followed by HIP; 2) sintered at 1500° C for 2h at vacuum followed by HIP; 3) sintered at 1350° C for 50h at vacuum; 4) sintered at 1600° C for 50h at vacuum. (b) External aspect of the four samples.

Fig 4.
Fig 4.

same graphic as figure 3 but representing logarithm of transmittance (absorbance) vs. the inverse of the wavelength square. Straight lines represent the linear fitting in the low wavelength region.

Fig. 5.
Fig. 5.

Microstructure of the four considered samples after a thermal etching. a) SEM image of sample sintered at 1400° C for 2h at vacuum to then HIP; b) SEM image of sample sintered at 1500° C for 2h at vacuum to then HIP; c) AFM image of sample sintered at 1350° C for 50h at vacuum; d) AFM image of sample sintered at 1600° C for 50h at vacuum (the contrast has been enhanced for a better visualization of grains).

Fig 6.
Fig 6.

(a) Maximum grain radius <ag > vs. the preferential crystallite angle, ξ for the considered samples. The continuous line is guide for the eye. (b) Comparison vs. the preferential crystallite angle ξdetermined by optical measurements and the x-ray Rietveld texture parameter. The continuous line is guide for the eye.

Tables (1)

Tables Icon

Table I. Values of α(ξ) calculated versus the orientation angle, calculated each 5°

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

I s ( θ , ζ , ϕ ) = E s 2 + E s 2
I ( θ , ζ ) = 1 2 π π π I ( θ , ξ , ϕ )
I = 0 2 π E s 2 + E s 2 2 π
d E j = k 2 4 π 0 ε av r e ikr ( u r × d p × u r )
d E s = k 2 4 π 0 ε av r e ikr ( d p x cos θ d p z sin θ )
d E s = k 2 4 π 0 ε av r e ikr d p y
p = V ' α ˜ ( r ' ) E ( r ' ) dV '
d α ˜ = 0 ( ε ˜ r ε ˜ av ) dV '
ε ˜ r ε ˜ av = P ε 0 ε av 0 0 0 ε o ε av 0 0 0 ε e ε av P 1
{ ε o = ε av r o Δ ε e = ε av + r e Δ
{ r o + r e = 1 ε e ε o = Δ
d p = 0 Δ 2 r o + 1 2 sin 2 ξ ( 1 + cos 2 ϕ + sin 2 ϕ ) r o sin 2 ξ sin ϕ ( cos ϕ + sin ϕ ) cos ξ sin ξ ( cos ϕ + sin ϕ ) dV
d E s = k 2 4 π ε av r e ikr Δ 2 { cos θ [ r o 1 2 sin 2 ξ ( 1 + cos 2 ϕ + sin 2 ϕ ) ] sin θ [ cos ξ sin ξ ( cos ϕ + sin ϕ ) ] } dV
d E s = k 2 4 π ε av r e ikr Δ 2 [ r o + sin 2 ξ sin ϕ ( cos ϕ + sin ϕ ) ] dV
I = I 0 k 4 V 2 R ( θ ) 2 ( 4 πr ε av ) 2 Δ 2 [ ( 1 + cos 2 θ ) 2 . 3 8 r o + 16 r o 2 + ( 8 r o 4 ) cos 2 ξ + cos 4 ξ 16 + sin 2 θ sin 2 2 ξ 8 ]
Q sca = Δ n 2 n av 2 [ Φ 1 ( x ) α ( ξ , r o ) + Φ 2 ( x ) β ( ξ , r o ) ]
α ( ξ , r o ) = 3 8 r o + 16 r o 2 + ( 8 r o 4 ) cos 2 ξ + cos 4 ξ 4
β ( ξ , r o ) = sin 2 2 ξ
( 1 + c pez ) ( ε av ε o ) ( 1 L ) ε av + ε o + ( 1 c pez ) ( ε av ε e ) 2 L ε av + ( 1 2 L ) ε e = 0
r o = 1 c pez 2
r e = 1 + c pez 2
c pez = 1 / 4 π cos 2 ( ψ ) Γ pe ( Γ ) d Ω
c pez ( ξ ) = cos 2 ( ξ ) 1 + sin 2 ( ξ )
r o = sin 2 ( ξ ) 1 + sin 2 ( ξ )
r e = 1 1 + sin 2 ( ξ )
α ( ξ ) = ( 11 4 cos ( 2 ξ ) + cos ( 4 ξ ) ) sin 4 ( ξ ) ( cos ( 2 ξ ) 3 ) 2
β ( ξ ) = sin 2 2 ξ
Φ 1 ( x ) = 5 2 + 2 x 2 7 ( 1 cos 4 x ) 16 x 2 sin 4 x 4 x ( 2 1 2 x 2 ) ( γ Ci ( 4 x ) ln 4 x )
Φ 2 ( x ) = 3 ( 1 cos 4 x 8 x 2 1 ) + sin 4 x 2 x + ( 2 1 2 x 2 ) ( γ Ci ( 4 x ) + ln 4 x )
Φ 1 ( x ) { 32 27 x 2 if x 0 2 x 2 if x
Φ 2 ( x ) { 16 27 x 4 if x 0 3 + 2 γ + ln 16 + 2 ln x if x
Q ( x , ξ ) = { 2 x 2 Δ n 2 n av 2 ( 11 4 cos ( 2 ξ ) + cos ( 4 ξ ) ) sin 4 ( ξ ) ( cos ( 2 ξ ) 3 ) 2 32 27 x 4 Δ n 2 n av 2 ( 13 4 cos ( 2 ξ ) cos ( 4 ξ ) ) sin 2 ( ξ ) ( cos ( 2 ξ ) 3 ) 2 if x 1
Q ( x , ξ ) = 2 x 2 Δ n 2 n av 2 α ( ξ )
R . I . T = [ 1 2 ( n av 1 n av + 1 ) 2 ] e κd
κ = π a 2 Q sca N = f 3 4 Q sca a
κ = i f i a i 6 π 2 λ 2 Δ n 2 α ( ξ )
f i = a i 3 i a i 3
κ = a g 6 π 2 λ 2 Δ n 2 α ( ξ )
a g = i a i f i = i a i 4 i a i 3
log ( R . I . T . ) = log ( T 0 ) 6 π 2 a g λ 2 Δ n 2 α ( ξ ) d
Δ n Apetz = Δ n 2 α
Δ n Apetz = Δ n 2 ( 11 4 cos 2 ξ + cos 4 ξ ) sin 2 ξ cos 2 ξ 3
n random = 2 3 n o + 1 3 n e
Δ n Apetz , random = n random n o = 1 3 Δ n

Metrics