Abstract

In single particle imaging applications, the number of photons detected from the fluorescent label plays a crucial role in the quantitative analysis of the acquired data. For example, in tracking experiments the localization accuracy of the labeled entity can be improved by collecting more photons from the labeled entity. Here, we report the development of dual objective multifocal plane microscopy (dMUM) for single particle studies. The new microscope configuration uses two opposing objective lenses, where one of the objectives is in an inverted position and the other objective is in an upright position. We show that dMUM has a higher photon collection efficiency when compared to standard microscopes. We demonstrate that fluorescent labels can be localized with better accuracy in 2D and 3D when imaged through dMUM than when imaged through a standard microscope. Analytical tools are introduced to estimate the nanoprobe location from dMUM images and to characterize the accuracy with which they can be determined.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Saxton and K. Jacobson, "Single particle tracking : applications to membrane dynamics," Annu. Rev. Biophys. Biomol. Struct. 26, 373-399 (1997).
    [CrossRef] [PubMed]
  2. X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, "The power and prospects of fluorescence microscopies and spectroscopies," Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
    [CrossRef] [PubMed]
  3. E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, "Three-dimensional particle tracking via bifocal imaging." Nano Lett. 7, 2043-2045 (2007).
    [CrossRef] [PubMed]
  4. G. J. Schutz, J. Hesse, G. Freudenthaler, V. P. Pastushenko, H. G. Knaus, B. Pragl, and H. Schindler, "3D mapping of individual ion channels on living cells," Single Molecules 2, 153-157 (2000).
    [CrossRef]
  5. R. J. Ober, S. Ram, and E. S. Ward, "Localization accuracy in single molecule microscopy," Biophys. J. 86, 1185-1200 (2004).
    [CrossRef] [PubMed]
  6. M. P. Gordon, T. Ha, and P. R. Selvin, "Single molecule high resolution imaging with photobleaching," Proc. Natl. Acad. Sci. USA 101, 6462-6465 (2004).
    [CrossRef] [PubMed]
  7. S. Ram, E. S. Ward, and R. J. Ober, "Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy," Proc. Natl. Acad. Sci. USA 103, 4457-4462 (2006).
    [CrossRef] [PubMed]
  8. K. A. Lidke, B. Rieger, T. M. Jovin, and R. Heintzmann, "Superresolution by localization of quantum dots using blinking statistics," Opt. Express 13, 7052-7062 (2005).
    [CrossRef] [PubMed]
  9. S. Ram, P. Prabhat, J. Chao, E. S. ward, and R. J. Ober, "High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells," Biophys. J. 95, 6025-6043 (2008).
    [CrossRef] [PubMed]
  10. L. Holtzer, T. Meckel, and T. Schmidt, "Nanometric three-dimensional tracking of individual quantum dots in cells," Appl. Phys. Lett. 90, 053902 (2007).
    [CrossRef]
  11. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
    [CrossRef] [PubMed]
  12. A. Sharonov and R. M. Hochstrasser, "Wide-field subdiffraction imaging by accumulated binding of diffusing probes," Proc. Natl. Acad. Sci. USA 103, 18911-18916 (2006).
    [CrossRef] [PubMed]
  13. J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, "High-contrast single-particle tracking by selective focal plane illumination microscopy," Opt. Express 16, 7142-7152 (2008).
    [CrossRef] [PubMed]
  14. A. Agrawal, R. Deo, G. D. Wang, M. D. Wang, and S. Nie, "Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes," Proc. Natl. Acad. Sci. USA 105, 3298-3303 (2008).
    [CrossRef] [PubMed]
  15. V. Levi, Q. Ruan, and E. Gratton, "3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells," Biophys. J. 88, 2919-2928 (2005).
    [CrossRef] [PubMed]
  16. M. Speidel, A. Jon as, and E. L. Florin, "Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging," Opt. Lett. 28, 69-71 (2003).
    [CrossRef] [PubMed]
  17. H. Cang, C. S. Xu, D. Montiel, and H. Yang, "Guiding a confocal microscope by single fluorescent nanoparticles," Opt. Lett. 32, 2729-2731 (2007).
    [CrossRef] [PubMed]
  18. A. J. Berglund and H. Mabuchi, "Tracking-FCS: fluorescence correlation spectroscopy of individual particles," Opt. Express 13, 8069-8082 (2005).
    [CrossRef] [PubMed]
  19. G. A. Lessard, P. M. Goowin, and J. H. Werner, "Three-dimensional tracking of individual quantum dots," Appl. Phys. Lett. 91, 224106 (2007).
    [CrossRef]
  20. S. Djidel, J. K. Gansel, H. I. Campbell, and A. H. Greenaway, "High speed, 3-dimensional telecentric imaging," Opt. Express 14, 8269-8277 (2006).
    [CrossRef] [PubMed]
  21. W. Amir, R. Carriles, E. Hoover, T. A. Planchon, C. G. Durfee, and J. A. Squier, "Simultaneous imaging of multiple focal planes using a two-photon scanning microscope," Opt. Lett. 32, 1731-1733 (2007).
    [CrossRef] [PubMed]
  22. J. Rosen and G. Brooker, "Non-scanning motionless fluorescence three-dimensional holographic microscopy," Nature Photonics 2, 190-195 (2008).
    [CrossRef]
  23. S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical microscopes," Multidimens. Syst. Signal Process. 17, 27-58 (2006).
    [CrossRef]
  24. N. Bobroff, "Position measurement with a resolution and noise limited instrument," Rev. Sci. Instrum. 57, 1152- 1157 (1986).
    [CrossRef]
  25. U. Kubitscheck, O. Kuckmann, T. Kues, and R. Peters, "Imaging and tracking single GFP molecules in solution," Biophys. J. 78, 2170-2179 (2000).
    [CrossRef] [PubMed]
  26. R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise nanometer localization analysis for individual fluorescent probes," Biophys. J. 82, 2775-2783 (2002).
    [CrossRef] [PubMed]
  27. S. Ram, E. S. Ward, and R. J. Ober, "How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?" Proc. SPIE 5699, 426-435 (2005).
    [CrossRef]
  28. F. Aguet, D. V. D. Ville, and M. Unser, "A maximum likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles," Opt. Express 13, 10503-10522 (2005).
    [CrossRef] [PubMed]
  29. J. Chao, S. Ram, A. V. Abraham, E. S. Ward, and R. J. Ober, "A resolution measure for three-dimensional microscopy," Opt. Commun. 282, 1751-1761 (2009).
    [CrossRef]
  30. T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, "Forbidden light detection from single molecules," Anal. Chem. 72, 2117-2123 (2000).
    [CrossRef] [PubMed]
  31. A. P. Alivisatos, W. Gu, and C. Larabell, "Quantum dots as cellular probes," Annu. Rev. Biomed. Engg. 7, 55-76 (2005).
    [CrossRef]
  32. S. W. Hell and E. H. Stelzer, "Properties of a 4Pi confocal fluorescence microscope," J. Opt. Soc. Am. A 9, 2156-2166 (1992).
    [CrossRef]
  33. S. W. Hell and E. H. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992).
    [CrossRef]
  34. M. G. Gustafsson, D. A. Agard, and J. W. Sedat, "Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses," Proc. SPIE 2412, 147-156 (1995).
    [CrossRef]
  35. M. G. Gustafsson, "Extended resolution fluorescence microscopy," Curr. Opin. Struct. Biol. 9, 627-634 (1999).
    [CrossRef] [PubMed]
  36. E. Betzig, "Excitation strategies for optical lattice microscopy," Opt. Express 13, 3021-3036 (2005).
    [CrossRef] [PubMed]
  37. P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, "Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions," IEEE Trans. Nanobioscie. 3, 237-242 (2004).
    [CrossRef]
  38. S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, "A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking," Proc. SPIE 6443, D1-D7 (2007).
  39. P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
    [CrossRef] [PubMed]
  40. www4.utsouthwestern.edu/wardlab/miatool.
  41. http://www4.utsouthwestern.edu/wardlab/estimationTool.
  42. http://www4.utsouthwestern.edu/wardlab/FandPLimitTool.
  43. MATLAB, Image processing toolbox user guide ver 3.0 (The MathWorks Inc, USA, 2001).
  44. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999).
  45. C. R. Rao, Linear statistical inference and its applications. (Wiley, New York, USA., 1965).
  46. M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, "Multicolor super-resolution imaging with photo-switchable fluorescent probes," Science 317, 1749-1753 (2007).
    [CrossRef] [PubMed]
  47. S. F. Gibson and F. Lanni, "Diffraction by a circular aperture as a model for three-dimensional optical microscopy," J. Opt. Soc. Am. A 6, 1357-1367 (1989).
    [CrossRef] [PubMed]
  48. P. Torok, P. Varga, and G. R. Booker, "Electromagnetic diffraction of light focussed through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I," J. Opt. Soc. Am. A 12, 2136-2144 (1995).
    [CrossRef]

2009 (1)

J. Chao, S. Ram, A. V. Abraham, E. S. Ward, and R. J. Ober, "A resolution measure for three-dimensional microscopy," Opt. Commun. 282, 1751-1761 (2009).
[CrossRef]

2008 (4)

J. Rosen and G. Brooker, "Non-scanning motionless fluorescence three-dimensional holographic microscopy," Nature Photonics 2, 190-195 (2008).
[CrossRef]

S. Ram, P. Prabhat, J. Chao, E. S. ward, and R. J. Ober, "High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells," Biophys. J. 95, 6025-6043 (2008).
[CrossRef] [PubMed]

J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, "High-contrast single-particle tracking by selective focal plane illumination microscopy," Opt. Express 16, 7142-7152 (2008).
[CrossRef] [PubMed]

A. Agrawal, R. Deo, G. D. Wang, M. D. Wang, and S. Nie, "Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes," Proc. Natl. Acad. Sci. USA 105, 3298-3303 (2008).
[CrossRef] [PubMed]

2007 (8)

L. Holtzer, T. Meckel, and T. Schmidt, "Nanometric three-dimensional tracking of individual quantum dots in cells," Appl. Phys. Lett. 90, 053902 (2007).
[CrossRef]

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, "Three-dimensional particle tracking via bifocal imaging." Nano Lett. 7, 2043-2045 (2007).
[CrossRef] [PubMed]

W. Amir, R. Carriles, E. Hoover, T. A. Planchon, C. G. Durfee, and J. A. Squier, "Simultaneous imaging of multiple focal planes using a two-photon scanning microscope," Opt. Lett. 32, 1731-1733 (2007).
[CrossRef] [PubMed]

H. Cang, C. S. Xu, D. Montiel, and H. Yang, "Guiding a confocal microscope by single fluorescent nanoparticles," Opt. Lett. 32, 2729-2731 (2007).
[CrossRef] [PubMed]

G. A. Lessard, P. M. Goowin, and J. H. Werner, "Three-dimensional tracking of individual quantum dots," Appl. Phys. Lett. 91, 224106 (2007).
[CrossRef]

S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, "A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking," Proc. SPIE 6443, D1-D7 (2007).

P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
[CrossRef] [PubMed]

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, "Multicolor super-resolution imaging with photo-switchable fluorescent probes," Science 317, 1749-1753 (2007).
[CrossRef] [PubMed]

2006 (5)

S. Djidel, J. K. Gansel, H. I. Campbell, and A. H. Greenaway, "High speed, 3-dimensional telecentric imaging," Opt. Express 14, 8269-8277 (2006).
[CrossRef] [PubMed]

S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical microscopes," Multidimens. Syst. Signal Process. 17, 27-58 (2006).
[CrossRef]

S. Ram, E. S. Ward, and R. J. Ober, "Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy," Proc. Natl. Acad. Sci. USA 103, 4457-4462 (2006).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

A. Sharonov and R. M. Hochstrasser, "Wide-field subdiffraction imaging by accumulated binding of diffusing probes," Proc. Natl. Acad. Sci. USA 103, 18911-18916 (2006).
[CrossRef] [PubMed]

2005 (7)

V. Levi, Q. Ruan, and E. Gratton, "3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells," Biophys. J. 88, 2919-2928 (2005).
[CrossRef] [PubMed]

K. A. Lidke, B. Rieger, T. M. Jovin, and R. Heintzmann, "Superresolution by localization of quantum dots using blinking statistics," Opt. Express 13, 7052-7062 (2005).
[CrossRef] [PubMed]

A. J. Berglund and H. Mabuchi, "Tracking-FCS: fluorescence correlation spectroscopy of individual particles," Opt. Express 13, 8069-8082 (2005).
[CrossRef] [PubMed]

S. Ram, E. S. Ward, and R. J. Ober, "How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?" Proc. SPIE 5699, 426-435 (2005).
[CrossRef]

F. Aguet, D. V. D. Ville, and M. Unser, "A maximum likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles," Opt. Express 13, 10503-10522 (2005).
[CrossRef] [PubMed]

A. P. Alivisatos, W. Gu, and C. Larabell, "Quantum dots as cellular probes," Annu. Rev. Biomed. Engg. 7, 55-76 (2005).
[CrossRef]

E. Betzig, "Excitation strategies for optical lattice microscopy," Opt. Express 13, 3021-3036 (2005).
[CrossRef] [PubMed]

2004 (3)

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, "Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions," IEEE Trans. Nanobioscie. 3, 237-242 (2004).
[CrossRef]

R. J. Ober, S. Ram, and E. S. Ward, "Localization accuracy in single molecule microscopy," Biophys. J. 86, 1185-1200 (2004).
[CrossRef] [PubMed]

M. P. Gordon, T. Ha, and P. R. Selvin, "Single molecule high resolution imaging with photobleaching," Proc. Natl. Acad. Sci. USA 101, 6462-6465 (2004).
[CrossRef] [PubMed]

2003 (2)

X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, "The power and prospects of fluorescence microscopies and spectroscopies," Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
[CrossRef] [PubMed]

M. Speidel, A. Jon as, and E. L. Florin, "Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging," Opt. Lett. 28, 69-71 (2003).
[CrossRef] [PubMed]

2002 (1)

R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise nanometer localization analysis for individual fluorescent probes," Biophys. J. 82, 2775-2783 (2002).
[CrossRef] [PubMed]

2000 (3)

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, "Forbidden light detection from single molecules," Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

U. Kubitscheck, O. Kuckmann, T. Kues, and R. Peters, "Imaging and tracking single GFP molecules in solution," Biophys. J. 78, 2170-2179 (2000).
[CrossRef] [PubMed]

G. J. Schutz, J. Hesse, G. Freudenthaler, V. P. Pastushenko, H. G. Knaus, B. Pragl, and H. Schindler, "3D mapping of individual ion channels on living cells," Single Molecules 2, 153-157 (2000).
[CrossRef]

1999 (1)

M. G. Gustafsson, "Extended resolution fluorescence microscopy," Curr. Opin. Struct. Biol. 9, 627-634 (1999).
[CrossRef] [PubMed]

1997 (1)

M. J. Saxton and K. Jacobson, "Single particle tracking : applications to membrane dynamics," Annu. Rev. Biophys. Biomol. Struct. 26, 373-399 (1997).
[CrossRef] [PubMed]

1995 (2)

M. G. Gustafsson, D. A. Agard, and J. W. Sedat, "Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses," Proc. SPIE 2412, 147-156 (1995).
[CrossRef]

P. Torok, P. Varga, and G. R. Booker, "Electromagnetic diffraction of light focussed through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I," J. Opt. Soc. Am. A 12, 2136-2144 (1995).
[CrossRef]

1992 (2)

S. W. Hell and E. H. Stelzer, "Properties of a 4Pi confocal fluorescence microscope," J. Opt. Soc. Am. A 9, 2156-2166 (1992).
[CrossRef]

S. W. Hell and E. H. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992).
[CrossRef]

1989 (1)

1986 (1)

N. Bobroff, "Position measurement with a resolution and noise limited instrument," Rev. Sci. Instrum. 57, 1152- 1157 (1986).
[CrossRef]

Abraham, A. V.

J. Chao, S. Ram, A. V. Abraham, E. S. Ward, and R. J. Ober, "A resolution measure for three-dimensional microscopy," Opt. Commun. 282, 1751-1761 (2009).
[CrossRef]

Agard, D. A.

M. G. Gustafsson, D. A. Agard, and J. W. Sedat, "Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses," Proc. SPIE 2412, 147-156 (1995).
[CrossRef]

Agrawal, A.

A. Agrawal, R. Deo, G. D. Wang, M. D. Wang, and S. Nie, "Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes," Proc. Natl. Acad. Sci. USA 105, 3298-3303 (2008).
[CrossRef] [PubMed]

Aguet, F.

Alivisatos, A. P.

A. P. Alivisatos, W. Gu, and C. Larabell, "Quantum dots as cellular probes," Annu. Rev. Biomed. Engg. 7, 55-76 (2005).
[CrossRef]

Amir, W.

Balci, H.

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, "Three-dimensional particle tracking via bifocal imaging." Nano Lett. 7, 2043-2045 (2007).
[CrossRef] [PubMed]

Bates, M.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, "Multicolor super-resolution imaging with photo-switchable fluorescent probes," Science 317, 1749-1753 (2007).
[CrossRef] [PubMed]

Berglund, A. J.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

E. Betzig, "Excitation strategies for optical lattice microscopy," Opt. Express 13, 3021-3036 (2005).
[CrossRef] [PubMed]

Blehm, B. H.

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, "Three-dimensional particle tracking via bifocal imaging." Nano Lett. 7, 2043-2045 (2007).
[CrossRef] [PubMed]

Bobroff, N.

N. Bobroff, "Position measurement with a resolution and noise limited instrument," Rev. Sci. Instrum. 57, 1152- 1157 (1986).
[CrossRef]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Booker, G. R.

Brooker, G.

J. Rosen and G. Brooker, "Non-scanning motionless fluorescence three-dimensional holographic microscopy," Nature Photonics 2, 190-195 (2008).
[CrossRef]

Campbell, H. I.

Cang, H.

Carriles, R.

Chao, J.

J. Chao, S. Ram, A. V. Abraham, E. S. Ward, and R. J. Ober, "A resolution measure for three-dimensional microscopy," Opt. Commun. 282, 1751-1761 (2009).
[CrossRef]

S. Ram, P. Prabhat, J. Chao, E. S. ward, and R. J. Ober, "High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells," Biophys. J. 95, 6025-6043 (2008).
[CrossRef] [PubMed]

P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
[CrossRef] [PubMed]

S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, "A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking," Proc. SPIE 6443, D1-D7 (2007).

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Dempsey, G. T.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, "Multicolor super-resolution imaging with photo-switchable fluorescent probes," Science 317, 1749-1753 (2007).
[CrossRef] [PubMed]

Deo, R.

A. Agrawal, R. Deo, G. D. Wang, M. D. Wang, and S. Nie, "Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes," Proc. Natl. Acad. Sci. USA 105, 3298-3303 (2008).
[CrossRef] [PubMed]

Djidel, S.

Doose, S.

X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, "The power and prospects of fluorescence microscopies and spectroscopies," Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
[CrossRef] [PubMed]

Durfee, C. G.

Enderlein, J.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, "Forbidden light detection from single molecules," Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

Freudenthaler, G.

G. J. Schutz, J. Hesse, G. Freudenthaler, V. P. Pastushenko, H. G. Knaus, B. Pragl, and H. Schindler, "3D mapping of individual ion channels on living cells," Single Molecules 2, 153-157 (2000).
[CrossRef]

Gan, Z.

P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
[CrossRef] [PubMed]

Gansel, J. K.

Gibbons, S.

P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
[CrossRef] [PubMed]

Gibson, S. F.

Goowin, P. M.

G. A. Lessard, P. M. Goowin, and J. H. Werner, "Three-dimensional tracking of individual quantum dots," Appl. Phys. Lett. 91, 224106 (2007).
[CrossRef]

Gordon, M. P.

M. P. Gordon, T. Ha, and P. R. Selvin, "Single molecule high resolution imaging with photobleaching," Proc. Natl. Acad. Sci. USA 101, 6462-6465 (2004).
[CrossRef] [PubMed]

Gratton, E.

V. Levi, Q. Ruan, and E. Gratton, "3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells," Biophys. J. 88, 2919-2928 (2005).
[CrossRef] [PubMed]

Greenaway, A. H.

Gu, W.

A. P. Alivisatos, W. Gu, and C. Larabell, "Quantum dots as cellular probes," Annu. Rev. Biomed. Engg. 7, 55-76 (2005).
[CrossRef]

Gustafsson, M. G.

M. G. Gustafsson, "Extended resolution fluorescence microscopy," Curr. Opin. Struct. Biol. 9, 627-634 (1999).
[CrossRef] [PubMed]

M. G. Gustafsson, D. A. Agard, and J. W. Sedat, "Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses," Proc. SPIE 2412, 147-156 (1995).
[CrossRef]

Ha, T.

M. P. Gordon, T. Ha, and P. R. Selvin, "Single molecule high resolution imaging with photobleaching," Proc. Natl. Acad. Sci. USA 101, 6462-6465 (2004).
[CrossRef] [PubMed]

Heintzmann, R.

Hell, S. W.

S. W. Hell and E. H. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992).
[CrossRef]

S. W. Hell and E. H. Stelzer, "Properties of a 4Pi confocal fluorescence microscope," J. Opt. Soc. Am. A 9, 2156-2166 (1992).
[CrossRef]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Hesse, J.

G. J. Schutz, J. Hesse, G. Freudenthaler, V. P. Pastushenko, H. G. Knaus, B. Pragl, and H. Schindler, "3D mapping of individual ion channels on living cells," Single Molecules 2, 153-157 (2000).
[CrossRef]

Hochstrasser, R. M.

A. Sharonov and R. M. Hochstrasser, "Wide-field subdiffraction imaging by accumulated binding of diffusing probes," Proc. Natl. Acad. Sci. USA 103, 18911-18916 (2006).
[CrossRef] [PubMed]

Holtzer, L.

L. Holtzer, T. Meckel, and T. Schmidt, "Nanometric three-dimensional tracking of individual quantum dots in cells," Appl. Phys. Lett. 90, 053902 (2007).
[CrossRef]

Hoover, E.

Huang, B.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, "Multicolor super-resolution imaging with photo-switchable fluorescent probes," Science 317, 1749-1753 (2007).
[CrossRef] [PubMed]

Jacobson, K.

M. J. Saxton and K. Jacobson, "Single particle tracking : applications to membrane dynamics," Annu. Rev. Biophys. Biomol. Struct. 26, 373-399 (1997).
[CrossRef] [PubMed]

Jovin, T. M.

Jung, S.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, "Forbidden light detection from single molecules," Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

Kapanidis, A. N.

X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, "The power and prospects of fluorescence microscopies and spectroscopies," Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
[CrossRef] [PubMed]

Knaus, H. G.

G. J. Schutz, J. Hesse, G. Freudenthaler, V. P. Pastushenko, H. G. Knaus, B. Pragl, and H. Schindler, "3D mapping of individual ion channels on living cells," Single Molecules 2, 153-157 (2000).
[CrossRef]

Kubitscheck, U.

Kuckmann, O.

U. Kubitscheck, O. Kuckmann, T. Kues, and R. Peters, "Imaging and tracking single GFP molecules in solution," Biophys. J. 78, 2170-2179 (2000).
[CrossRef] [PubMed]

Kues, T.

U. Kubitscheck, O. Kuckmann, T. Kues, and R. Peters, "Imaging and tracking single GFP molecules in solution," Biophys. J. 78, 2170-2179 (2000).
[CrossRef] [PubMed]

Lanni, F.

Larabell, C.

A. P. Alivisatos, W. Gu, and C. Larabell, "Quantum dots as cellular probes," Annu. Rev. Biomed. Engg. 7, 55-76 (2005).
[CrossRef]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise nanometer localization analysis for individual fluorescent probes," Biophys. J. 82, 2775-2783 (2002).
[CrossRef] [PubMed]

Laurence, T.

X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, "The power and prospects of fluorescence microscopies and spectroscopies," Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
[CrossRef] [PubMed]

Lessard, G. A.

G. A. Lessard, P. M. Goowin, and J. H. Werner, "Three-dimensional tracking of individual quantum dots," Appl. Phys. Lett. 91, 224106 (2007).
[CrossRef]

Levi, V.

V. Levi, Q. Ruan, and E. Gratton, "3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells," Biophys. J. 88, 2919-2928 (2005).
[CrossRef] [PubMed]

Lidke, K. A.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Mabuchi, H.

Meckel, T.

L. Holtzer, T. Meckel, and T. Schmidt, "Nanometric three-dimensional tracking of individual quantum dots in cells," Appl. Phys. Lett. 90, 053902 (2007).
[CrossRef]

Michalet, X.

X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, "The power and prospects of fluorescence microscopies and spectroscopies," Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
[CrossRef] [PubMed]

Montiel, D.

Nie, S.

A. Agrawal, R. Deo, G. D. Wang, M. D. Wang, and S. Nie, "Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes," Proc. Natl. Acad. Sci. USA 105, 3298-3303 (2008).
[CrossRef] [PubMed]

Ober, R. J.

J. Chao, S. Ram, A. V. Abraham, E. S. Ward, and R. J. Ober, "A resolution measure for three-dimensional microscopy," Opt. Commun. 282, 1751-1761 (2009).
[CrossRef]

P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
[CrossRef] [PubMed]

S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, "A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking," Proc. SPIE 6443, D1-D7 (2007).

S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical microscopes," Multidimens. Syst. Signal Process. 17, 27-58 (2006).
[CrossRef]

S. Ram, E. S. Ward, and R. J. Ober, "Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy," Proc. Natl. Acad. Sci. USA 103, 4457-4462 (2006).
[CrossRef] [PubMed]

S. Ram, E. S. Ward, and R. J. Ober, "How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?" Proc. SPIE 5699, 426-435 (2005).
[CrossRef]

R. J. Ober, S. Ram, and E. S. Ward, "Localization accuracy in single molecule microscopy," Biophys. J. 86, 1185-1200 (2004).
[CrossRef] [PubMed]

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, "Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions," IEEE Trans. Nanobioscie. 3, 237-242 (2004).
[CrossRef]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Pastushenko, V. P.

G. J. Schutz, J. Hesse, G. Freudenthaler, V. P. Pastushenko, H. G. Knaus, B. Pragl, and H. Schindler, "3D mapping of individual ion channels on living cells," Single Molecules 2, 153-157 (2000).
[CrossRef]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Peters, R.

U. Kubitscheck, O. Kuckmann, T. Kues, and R. Peters, "Imaging and tracking single GFP molecules in solution," Biophys. J. 78, 2170-2179 (2000).
[CrossRef] [PubMed]

Pflughoefft, M.

X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, "The power and prospects of fluorescence microscopies and spectroscopies," Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
[CrossRef] [PubMed]

Pinaud, F.

X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, "The power and prospects of fluorescence microscopies and spectroscopies," Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
[CrossRef] [PubMed]

Planchon, T. A.

Prabhat, P.

S. Ram, P. Prabhat, J. Chao, E. S. ward, and R. J. Ober, "High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells," Biophys. J. 95, 6025-6043 (2008).
[CrossRef] [PubMed]

S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, "A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking," Proc. SPIE 6443, D1-D7 (2007).

P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
[CrossRef] [PubMed]

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, "Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions," IEEE Trans. Nanobioscie. 3, 237-242 (2004).
[CrossRef]

Pragl, B.

G. J. Schutz, J. Hesse, G. Freudenthaler, V. P. Pastushenko, H. G. Knaus, B. Pragl, and H. Schindler, "3D mapping of individual ion channels on living cells," Single Molecules 2, 153-157 (2000).
[CrossRef]

Ram, S.

J. Chao, S. Ram, A. V. Abraham, E. S. Ward, and R. J. Ober, "A resolution measure for three-dimensional microscopy," Opt. Commun. 282, 1751-1761 (2009).
[CrossRef]

S. Ram, P. Prabhat, J. Chao, E. S. ward, and R. J. Ober, "High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells," Biophys. J. 95, 6025-6043 (2008).
[CrossRef] [PubMed]

S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, "A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking," Proc. SPIE 6443, D1-D7 (2007).

P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
[CrossRef] [PubMed]

S. Ram, E. S. Ward, and R. J. Ober, "Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy," Proc. Natl. Acad. Sci. USA 103, 4457-4462 (2006).
[CrossRef] [PubMed]

S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical microscopes," Multidimens. Syst. Signal Process. 17, 27-58 (2006).
[CrossRef]

S. Ram, E. S. Ward, and R. J. Ober, "How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?" Proc. SPIE 5699, 426-435 (2005).
[CrossRef]

R. J. Ober, S. Ram, and E. S. Ward, "Localization accuracy in single molecule microscopy," Biophys. J. 86, 1185-1200 (2004).
[CrossRef] [PubMed]

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, "Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions," IEEE Trans. Nanobioscie. 3, 237-242 (2004).
[CrossRef]

Rieger, B.

Ritter, J. G.

Rosen, J.

J. Rosen and G. Brooker, "Non-scanning motionless fluorescence three-dimensional holographic microscopy," Nature Photonics 2, 190-195 (2008).
[CrossRef]

Ruan, Q.

V. Levi, Q. Ruan, and E. Gratton, "3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells," Biophys. J. 88, 2919-2928 (2005).
[CrossRef] [PubMed]

Ruckstuhl, T.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, "Forbidden light detection from single molecules," Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

Saxton, M. J.

M. J. Saxton and K. Jacobson, "Single particle tracking : applications to membrane dynamics," Annu. Rev. Biophys. Biomol. Struct. 26, 373-399 (1997).
[CrossRef] [PubMed]

Schindler, H.

G. J. Schutz, J. Hesse, G. Freudenthaler, V. P. Pastushenko, H. G. Knaus, B. Pragl, and H. Schindler, "3D mapping of individual ion channels on living cells," Single Molecules 2, 153-157 (2000).
[CrossRef]

Schmidt, T.

L. Holtzer, T. Meckel, and T. Schmidt, "Nanometric three-dimensional tracking of individual quantum dots in cells," Appl. Phys. Lett. 90, 053902 (2007).
[CrossRef]

Schutz, G. J.

G. J. Schutz, J. Hesse, G. Freudenthaler, V. P. Pastushenko, H. G. Knaus, B. Pragl, and H. Schindler, "3D mapping of individual ion channels on living cells," Single Molecules 2, 153-157 (2000).
[CrossRef]

Sedat, J. W.

M. G. Gustafsson, D. A. Agard, and J. W. Sedat, "Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses," Proc. SPIE 2412, 147-156 (1995).
[CrossRef]

Seeger, S.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, "Forbidden light detection from single molecules," Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

Selvin, P. R.

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, "Three-dimensional particle tracking via bifocal imaging." Nano Lett. 7, 2043-2045 (2007).
[CrossRef] [PubMed]

M. P. Gordon, T. Ha, and P. R. Selvin, "Single molecule high resolution imaging with photobleaching," Proc. Natl. Acad. Sci. USA 101, 6462-6465 (2004).
[CrossRef] [PubMed]

Sharonov, A.

A. Sharonov and R. M. Hochstrasser, "Wide-field subdiffraction imaging by accumulated binding of diffusing probes," Proc. Natl. Acad. Sci. USA 103, 18911-18916 (2006).
[CrossRef] [PubMed]

Siebrasse, J. P.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Speidel, M.

Squier, J. A.

Stelzer, E. H.

S. W. Hell and E. H. Stelzer, "Properties of a 4Pi confocal fluorescence microscope," J. Opt. Soc. Am. A 9, 2156-2166 (1992).
[CrossRef]

S. W. Hell and E. H. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992).
[CrossRef]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise nanometer localization analysis for individual fluorescent probes," Biophys. J. 82, 2775-2783 (2002).
[CrossRef] [PubMed]

Toprak, E.

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, "Three-dimensional particle tracking via bifocal imaging." Nano Lett. 7, 2043-2045 (2007).
[CrossRef] [PubMed]

Torok, P.

Unser, M.

Vaccaro, C.

P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
[CrossRef] [PubMed]

Varga, P.

Veith, R.

Ville, D. V. D.

Wang, G. D.

A. Agrawal, R. Deo, G. D. Wang, M. D. Wang, and S. Nie, "Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes," Proc. Natl. Acad. Sci. USA 105, 3298-3303 (2008).
[CrossRef] [PubMed]

Wang, M. D.

A. Agrawal, R. Deo, G. D. Wang, M. D. Wang, and S. Nie, "Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes," Proc. Natl. Acad. Sci. USA 105, 3298-3303 (2008).
[CrossRef] [PubMed]

Ward, E. S.

J. Chao, S. Ram, A. V. Abraham, E. S. Ward, and R. J. Ober, "A resolution measure for three-dimensional microscopy," Opt. Commun. 282, 1751-1761 (2009).
[CrossRef]

P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
[CrossRef] [PubMed]

S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, "A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking," Proc. SPIE 6443, D1-D7 (2007).

S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical microscopes," Multidimens. Syst. Signal Process. 17, 27-58 (2006).
[CrossRef]

S. Ram, E. S. Ward, and R. J. Ober, "Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy," Proc. Natl. Acad. Sci. USA 103, 4457-4462 (2006).
[CrossRef] [PubMed]

S. Ram, E. S. Ward, and R. J. Ober, "How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?" Proc. SPIE 5699, 426-435 (2005).
[CrossRef]

R. J. Ober, S. Ram, and E. S. Ward, "Localization accuracy in single molecule microscopy," Biophys. J. 86, 1185-1200 (2004).
[CrossRef] [PubMed]

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, "Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions," IEEE Trans. Nanobioscie. 3, 237-242 (2004).
[CrossRef]

Weiss, S.

X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, "The power and prospects of fluorescence microscopies and spectroscopies," Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
[CrossRef] [PubMed]

Werner, J. H.

G. A. Lessard, P. M. Goowin, and J. H. Werner, "Three-dimensional tracking of individual quantum dots," Appl. Phys. Lett. 91, 224106 (2007).
[CrossRef]

Xu, C. S.

Yang, H.

Zhuang, X.

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, "Multicolor super-resolution imaging with photo-switchable fluorescent probes," Science 317, 1749-1753 (2007).
[CrossRef] [PubMed]

Anal. Chem. (1)

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, "Forbidden light detection from single molecules," Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Engg. (1)

A. P. Alivisatos, W. Gu, and C. Larabell, "Quantum dots as cellular probes," Annu. Rev. Biomed. Engg. 7, 55-76 (2005).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (2)

M. J. Saxton and K. Jacobson, "Single particle tracking : applications to membrane dynamics," Annu. Rev. Biophys. Biomol. Struct. 26, 373-399 (1997).
[CrossRef] [PubMed]

X. Michalet, A. N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoefft, and S. Weiss, "The power and prospects of fluorescence microscopies and spectroscopies," Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett (1)

L. Holtzer, T. Meckel, and T. Schmidt, "Nanometric three-dimensional tracking of individual quantum dots in cells," Appl. Phys. Lett. 90, 053902 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

G. A. Lessard, P. M. Goowin, and J. H. Werner, "Three-dimensional tracking of individual quantum dots," Appl. Phys. Lett. 91, 224106 (2007).
[CrossRef]

Biophys. J. (5)

U. Kubitscheck, O. Kuckmann, T. Kues, and R. Peters, "Imaging and tracking single GFP molecules in solution," Biophys. J. 78, 2170-2179 (2000).
[CrossRef] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise nanometer localization analysis for individual fluorescent probes," Biophys. J. 82, 2775-2783 (2002).
[CrossRef] [PubMed]

V. Levi, Q. Ruan, and E. Gratton, "3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells," Biophys. J. 88, 2919-2928 (2005).
[CrossRef] [PubMed]

R. J. Ober, S. Ram, and E. S. Ward, "Localization accuracy in single molecule microscopy," Biophys. J. 86, 1185-1200 (2004).
[CrossRef] [PubMed]

S. Ram, P. Prabhat, J. Chao, E. S. ward, and R. J. Ober, "High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells," Biophys. J. 95, 6025-6043 (2008).
[CrossRef] [PubMed]

Curr. Opin. Struct. Biol. (1)

M. G. Gustafsson, "Extended resolution fluorescence microscopy," Curr. Opin. Struct. Biol. 9, 627-634 (1999).
[CrossRef] [PubMed]

IEEE Transactions on Nanobioscience (1)

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, "Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions," IEEE Trans. Nanobioscie. 3, 237-242 (2004).
[CrossRef]

J. Opt. Soc. Am. A (3)

Multidimens. Syst. Signal Process. (1)

S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical microscopes," Multidimens. Syst. Signal Process. 17, 27-58 (2006).
[CrossRef]

Nano Lett. (1)

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, "Three-dimensional particle tracking via bifocal imaging." Nano Lett. 7, 2043-2045 (2007).
[CrossRef] [PubMed]

Nature Photonics (1)

J. Rosen and G. Brooker, "Non-scanning motionless fluorescence three-dimensional holographic microscopy," Nature Photonics 2, 190-195 (2008).
[CrossRef]

Opt. Commun. (2)

S. W. Hell and E. H. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992).
[CrossRef]

J. Chao, S. Ram, A. V. Abraham, E. S. Ward, and R. J. Ober, "A resolution measure for three-dimensional microscopy," Opt. Commun. 282, 1751-1761 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. USA (5)

A. Sharonov and R. M. Hochstrasser, "Wide-field subdiffraction imaging by accumulated binding of diffusing probes," Proc. Natl. Acad. Sci. USA 103, 18911-18916 (2006).
[CrossRef] [PubMed]

A. Agrawal, R. Deo, G. D. Wang, M. D. Wang, and S. Nie, "Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes," Proc. Natl. Acad. Sci. USA 105, 3298-3303 (2008).
[CrossRef] [PubMed]

M. P. Gordon, T. Ha, and P. R. Selvin, "Single molecule high resolution imaging with photobleaching," Proc. Natl. Acad. Sci. USA 101, 6462-6465 (2004).
[CrossRef] [PubMed]

S. Ram, E. S. Ward, and R. J. Ober, "Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy," Proc. Natl. Acad. Sci. USA 103, 4457-4462 (2006).
[CrossRef] [PubMed]

P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular pathways leading to exocytosis of the Fc receptor, FcRn, using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. G. Gustafsson, D. A. Agard, and J. W. Sedat, "Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses," Proc. SPIE 2412, 147-156 (1995).
[CrossRef]

Proceedings of the SPIE (2)

S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, "A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking," Proc. SPIE 6443, D1-D7 (2007).

S. Ram, E. S. Ward, and R. J. Ober, "How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?" Proc. SPIE 5699, 426-435 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

N. Bobroff, "Position measurement with a resolution and noise limited instrument," Rev. Sci. Instrum. 57, 1152- 1157 (1986).
[CrossRef]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, "Multicolor super-resolution imaging with photo-switchable fluorescent probes," Science 317, 1749-1753 (2007).
[CrossRef] [PubMed]

Single Molecules (1)

G. J. Schutz, J. Hesse, G. Freudenthaler, V. P. Pastushenko, H. G. Knaus, B. Pragl, and H. Schindler, "3D mapping of individual ion channels on living cells," Single Molecules 2, 153-157 (2000).
[CrossRef]

Other (6)

www4.utsouthwestern.edu/wardlab/miatool.

http://www4.utsouthwestern.edu/wardlab/estimationTool.

http://www4.utsouthwestern.edu/wardlab/FandPLimitTool.

MATLAB, Image processing toolbox user guide ver 3.0 (The MathWorks Inc, USA, 2001).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999).

C. R. Rao, Linear statistical inference and its applications. (Wiley, New York, USA., 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Dual objective multifocal plane microscope. The figure shows a schematic of dMUM that is capable of imaging the sample from top and bottom. Our specific implementation of the dMUM imaging configuration used two inverted microscopes (Zeiss Ax-ioObserver), where one of the microscopes (top scope) was in an upside down orientation and mounted on linear translation stages that were then attached to the other microscope (bottom scope).

Fig. 2.
Fig. 2.

dMUM images of nanoprobe samples. Panels a and b show dMUM images of a 100 nm tetraspeck bead sample and a QD655 sample, respectively, and pertain to the 2D infocus imaging configuration. Panel c shows a dMUM image of a 100 nm tetraspeck bead sample that pertains to the 3D imaging configuration. This image was acquired by positioning the bottom scope objective close to the sample and the top scope objective a distance of 1.5μm away from the sample. In panel a (panel c) for the bead highlighted with an arrow, the number of photons detected in the bottom and top scope images are 4750 and 8770 (3600 and 5900), respectively. In panel b for the QD label highlighted with an arrow, the number of detected photons in the bottom scope and top scope images are 3100 and 8700, respectively. In all panels the rightmost column shows cropped images of the nanoprobe that are highlighted with an arrow in the left and center columns. The images shown are the raw data that are not spatially registered. Because of the use of different detectors to capture the images in the top and bottom scopes, there is a scale change between the bottom scope and top scope images. In all the panels, the nanoprobe images are numbered to aid visualization. Scale bar = 5μm.

Fig. 3.
Fig. 3.

Localization measure calculations for different microscope configurations. Panel a shows the variation of the 2D localization measure of x 0/y 0 coordinate as a function of the expected number of detected photons for dMUM (×,°) and for a standard microscope (*). Here, the photon detection rate for the standard microscope is set to 10,000 photons/s. For dMUM we consider two scenarios, one where we have the same photon detection rate of 10000 photons/s for the top and bottom scopes (×) and the other where we have different photon detection rates of 20000 photons/s and 10000 photon/s for the top and bottom scopes, respectively (°). The latter scenario of unequal photon detection rates occurs in our experimental data (Fig. 2). The following are the numerical values of the other parameters that are used to generate the plots in this panel: na = 1.2, M = 63, λ = 555 nm, the pixel array size is 11 × 11, the pixel size is 12.9 μm × 12.9 μm, the background component is 300 photons/pixel/s, the mean and standard deviation of the readout noise of the imaging detector are 0 e -/pixel and 8 e -/pixel, respectively, the X-Y coordinate of the nanoprobe is assumed to coincide with the center of the pixel array, and the noise statistics is assumed to be the same for all pixels. The x-axis range denotes the expected number of detected photons in the bottom scope which corresponds to an acquisition time range of 0.01 s to 1 s.

Fig. 4.
Fig. 4.

Schematic showing the 3D imaging configuration of dMUM and MUM. Both dMUM and MUM support simultaneous imaging of different focal planes. In dMUM the fluorescence signal is collected from above and below the sample by two different objective lenses, each of which is positioned such that they image a distinct focal plane. In MUM the fluorescence signal is detected from only one side of the sample. The collected signal is then split into two detectors, where each detector is placed at a specific calibrated distance from the tube lens.

Fig. 5.
Fig. 5.

Results of z-position estimation. The figure shows the z-position (z 0) estimates from simulated images whose means and standard deviations are listed in Table 2. Panel a shows the z-position estimates from dMUM images and panel b shows the z-position estimates from MUM images. In both panels, (—) indicates the mean value of the z-position estimates.

Fig. 6.
Fig. 6.

Effect of focal plane spacing on the 3D localization measure of dMUM. The figure shows the variation of the 3D localization measure of z 0 for dMUM as a function of the z-position for different plane spacing values of 1.0 μm (◇), 1.25 μm (*) and 1.5 μm (◁). All numerical values used to generate the above plots are identical to those used in Fig. 3(b).

Tables (2)

Tables Icon

Table 1. Results of 2D location estimation from dMUM images. The table lists the standard deviation (std-dev) and the 2D localization measure (loc-meas) for the X/Y coordinate of 100 nm tetraspeck beads that were imaged in the 2D infocus imaging configuration. The X-Y estimates for dMUM were determined using the estimation algorithm described in Section 2.4. The X-Y estimates for the top and bottom scopes were independently determined by fitting Airy profiles to the corresponding images. All X-Y coordinates were drift corrected prior to calculating the standard deviation. For each nanoprobe sample, the standard deviation was calculated from 80 estimates. The 2D localization measure for each bead was computed as described in Section 2.6.

Tables Icon

Table 2. Results of 3D location estimation from dMUM and MUM images. The table lists the z-position (z 0), standard deviation (std-dev) of z-position estimates and the 3D localization measure (loc-meas) of z 0 for dMUM/MUM. For each value of z 0, 300 dMUM/MUM images were simulated and the z-position was estimated from these images using MUMLA (see section 2.5). Fig. 5 shows the plot of the z-position estimates for each z 0 value for dMUM and MUM. The following numerical values were used to simulate the dMUM images. The wavelength of the detected photons was set to 525 nm, the numerical aperture and magnification of the bottom (top) scope objective were set to 1.2 and 63x (62.7x), respectively, the photon detection rate and background component for the bottom (top) scope were set to 3000 photon/s and 400 photons/pixel/s, respectively, the exposure time was set to 1 s, the pixel array size was set to 11 × 11, the pixel size was set to 12.9 μm×12.9 μm, the nanoprobe image was assumed to be at the center of the pixel array, the mean and standard deviation of the readout noise in the bottom (top) scope image were set to 0 e -/pixel and 8 e -/pixel (6 e -/pixel), respectively, and the plane spacing between the two focal planes was set to 1000 nm. The numerical values used to simulate the MUM images were identical to those used for simulating dMUM images, except that the photon detection rate and background component for the two focal planes were set to 1500 photon/s and 200 photons/pixel/s, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ θ b ( l , t ) = A b t b π M b 2 C l J 1 2 ( a b ( x M b x 0 ) 2 + ( y M b y 0 ) 2 ) ( x M b x 0 ) 2 + ( y M b y 0 ) 2 dxdy + B b , l t b ,
μ θ t ( k , t ) = A t t t π M t 2 C k J t 2 ( a t ( x M t f x ( x 0 , y 0 ) ) 2 + ( y M t f y ( x 0 , y 0 ) ) 2 ) ( x M t f x ( x 0 , y 0 ) ) 2 + ( y M t f x ( x 0 , y 0 ) ) 2 dxdy + B t , k t t ,
I ( θ ) = I t ( θ ) + I b ( θ ) , θ Θ ,

Metrics