Abstract

The imaging performances of multiphoton excitation and confocal laser scanning microscopy are herby considered: in typical experimental imaging conditions, a small finite amount of photon reaches the detector giving shot-noise fluctuations which affects the signal acquired. A significant detriment in the high frequencies transmission capability is obtained. In order to partially recover the high frequencies information lost, the insertion of a pupil plane filter in the microscope illumination light pathway on the objective lens is proposed. We demonstrate high-frequency and resolution enhancement in the case of linear and non linear fluorescence microscope approach under shot-noise condition.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. R. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Optica Acta 25, 315–325 (1978).
    [Crossref]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  3. Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3–12 (2005).
    [Crossref] [PubMed]
  4. T. Wilson and C. J. R. Sheppard, Theory and practice of scanning optical microscopy(AcademicPress, London,1984).
  5. A. Diaspro, G. Chirico, and M. Collini, “Two photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
    [Crossref]
  6. M. Nagorni and S. W. Hell, “Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts,” J. Opt. Soc. Am. A 18, 36–48 (2001).
    [Crossref]
  7. M. G. L. Gustafsson, “Extended resolution fluorescence microscopy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999).
    [Crossref] [PubMed]
  8. I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. 3, (1986).
    [Crossref]
  9. K. Carlsson, “The influence of specimen refractive index, detector signal integration and non uniform scan spees on the imaging properties in confocal microscopy,” J. Microsc. 163, 167–178 (1991).
    [Crossref]
  10. D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes,” Appl. Opt. 34, (1995).
    [Crossref] [PubMed]
  11. J. E. N. Jonkman and E. H. K. Steltzer, “Resolution and contrast in confocal Two-Photon Microscopy” in Confocal and Two Photons: Foundations, Applications and Advances, A. Diaspro Ed. (Wiley-Liss, 2002).
  12. J. B. Pawley, “Fundamental limits in confocal microscopy” in Handbook of biological confocal microscopyJ.B. Pawley Ed (Springer, 2006) Chap.2.
  13. G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti Fond. Giorgio Ronchi 7, 366–372 (1952).
  14. I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291(1982).
    [Crossref]
  15. O. Haeberl and B. Simon, “Improving lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400–408 (2006).
    [Crossref]
  16. P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855–1859 (2008).
    [Crossref]
  17. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
    [Crossref] [PubMed]
  18. C. Ibáñez-López, G. Saavedra, G. Boyer, and M. Martinez-Corral, “Quasi-isotropic 3-D resolution in two-photon scanning microscopy,” Opt. Express 13, 6168–6174 (2005).
    [Crossref] [PubMed]
  19. E. L. O’Neill, “Transfer function for an annular aperture,” J. Opt. Soc. Am. 46, 285–288 (1956).
    [Crossref]
  20. M. Gu and C. J. R. Sheppard, “Three-dimensional optical transfer function in a fiber-optical confocal fluorescence microscope using annular lenses,” J. Opt. Soc. Am. A 9, 1993–1999 (1992).
    [Crossref]
  21. B. J. D. William, C. Karl, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Capabilities and limitations of pupil-plane filters for superresolution and image enhancement,” Opt. Express 12, 4150–4156 (2004).
    [Crossref]
  22. M. R. Arnison and C. J. R. Sheppard, “A 3d vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Comm. 211, 53–63 (2002).
    [Crossref]
  23. C. W. McCutchen, “Generalized Aperture and the Three-Dimensional Diffraction Image,” J. Opt. Soc. Am. 54, 240–242 (1964).
    [Crossref]
  24. M. Gu and C. J. R. Sheppard, “Effects of a finite-sized pinhole on 3D image formation in confocal two-photon fluorescence microscopy,” J. Mod. Opt. 40, 2009–2024 (1993).
    [Crossref]
  25. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field” Proc. of the Royal Society of London. Series A 253, 349–357 (1959).
    [Crossref]
  26. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. of the Royal Society of London. Series A 253, 358–379 (1959).
    [Crossref]
  27. F. Cella, E. Ronzitti, G. Vicidomini, P. P. Mondal, and A. Diaspro “Studying the illumination puzzle towards an isotropic increase of optical resolution,” Proc. of SPIE 6861 (2008).
    [Crossref]
  28. I. T. Young, “Quantitative Microscopy,” IEEE Eng. Med. Biol. 15, 59–66 (1996).
    [Crossref]
  29. E. H. K. Steltzer, “Contrast, resolution, pixilation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15–24 (1998).
    [Crossref]
  30. A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, “Photobleaching,” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.16.
    [Crossref]
  31. P. J. Shaw, “Comparison of Widefield/Deconvolution and confocal microscopy for three-dimensional Imaging,” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.23.
    [Crossref]
  32. E. H. K. Steltzer, “The intermediate optical system of laser-scanning confocal microscopes”, in Handbook of biological confocal microscopy,” J. B. Pawley Ed (Springer, 2006), Chap. 9.
  33. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage,” Biophys. J. 77, 2226–2236 (1999).
    [Crossref] [PubMed]
  34. G. H. Patterson and D. W. Piston, “Photobleaching in Two-Photon Excitation Microscopy,” Biophys J. 78, 2159–2162 (2000).
    [Crossref] [PubMed]
  35. P. J. Verveer and T. M. Jovin, “Efficient superresolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy,” J. Opt. Soc. Am. A 14, 1696–1707 (1997).
    [Crossref]
  36. K. Lange and R. Carson, “EM Reconstruction Algorithms for emission and transmission tomography,” J. Comput. Assist. Tomogr. 8, 306–316 (1984).
    [PubMed]
  37. P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92, 103902 (2008).
    [Crossref]
  38. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
  39. M. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Pupil-plane filters for confocal microscope point spread function engineering,” Opt. Lett. 25, 245–247 (2000).
    [Crossref]
  40. C. J. R. Sheppard, X. Gan, M. Gu, and M. Roy, “Signal-to-Noise Ratio in Confocal Microscopes” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.22.
    [Crossref]
  41. V. Caorsi, E. Ronzitti, G. Vicidomini, S. Krol, G. McConnell, and A. Diaspro “FRET Measurements on Fuzzy Fluorescent Nanostructures,” Microsc. Res. Tech. 70, 452–458 (2007).
    [Crossref] [PubMed]
  42. G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J.Cell Science 114, 837–838 (2001).
    [PubMed]
  43. A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
    [Crossref] [PubMed]
  44. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91, 4258–4272 (2006).
    [Crossref] [PubMed]
  45. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref] [PubMed]

2008 (3)

P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855–1859 (2008).
[Crossref]

F. Cella, E. Ronzitti, G. Vicidomini, P. P. Mondal, and A. Diaspro “Studying the illumination puzzle towards an isotropic increase of optical resolution,” Proc. of SPIE 6861 (2008).
[Crossref]

P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92, 103902 (2008).
[Crossref]

2007 (2)

V. Caorsi, E. Ronzitti, G. Vicidomini, S. Krol, G. McConnell, and A. Diaspro “FRET Measurements on Fuzzy Fluorescent Nanostructures,” Microsc. Res. Tech. 70, 452–458 (2007).
[Crossref] [PubMed]

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

2006 (4)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

J. B. Pawley, “Fundamental limits in confocal microscopy” in Handbook of biological confocal microscopyJ.B. Pawley Ed (Springer, 2006) Chap.2.

O. Haeberl and B. Simon, “Improving lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400–408 (2006).
[Crossref]

2005 (3)

C. Ibáñez-López, G. Saavedra, G. Boyer, and M. Martinez-Corral, “Quasi-isotropic 3-D resolution in two-photon scanning microscopy,” Opt. Express 13, 6168–6174 (2005).
[Crossref] [PubMed]

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3–12 (2005).
[Crossref] [PubMed]

A. Diaspro, G. Chirico, and M. Collini, “Two photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
[Crossref]

2004 (2)

2002 (1)

M. R. Arnison and C. J. R. Sheppard, “A 3d vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Comm. 211, 53–63 (2002).
[Crossref]

2001 (2)

2000 (2)

1999 (2)

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage,” Biophys. J. 77, 2226–2236 (1999).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Extended resolution fluorescence microscopy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999).
[Crossref] [PubMed]

1998 (1)

E. H. K. Steltzer, “Contrast, resolution, pixilation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15–24 (1998).
[Crossref]

1997 (1)

1996 (2)

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

I. T. Young, “Quantitative Microscopy,” IEEE Eng. Med. Biol. 15, 59–66 (1996).
[Crossref]

1995 (1)

D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes,” Appl. Opt. 34, (1995).
[Crossref] [PubMed]

1993 (1)

M. Gu and C. J. R. Sheppard, “Effects of a finite-sized pinhole on 3D image formation in confocal two-photon fluorescence microscopy,” J. Mod. Opt. 40, 2009–2024 (1993).
[Crossref]

1992 (1)

M. Gu and C. J. R. Sheppard, “Three-dimensional optical transfer function in a fiber-optical confocal fluorescence microscope using annular lenses,” J. Opt. Soc. Am. A 9, 1993–1999 (1992).
[Crossref]

1991 (1)

K. Carlsson, “The influence of specimen refractive index, detector signal integration and non uniform scan spees on the imaging properties in confocal microscopy,” J. Microsc. 163, 167–178 (1991).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

1986 (1)

I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. 3, (1986).
[Crossref]

1984 (1)

K. Lange and R. Carson, “EM Reconstruction Algorithms for emission and transmission tomography,” J. Comput. Assist. Tomogr. 8, 306–316 (1984).
[PubMed]

1982 (1)

1978 (1)

C. J. R. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Optica Acta 25, 315–325 (1978).
[Crossref]

1964 (1)

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field” Proc. of the Royal Society of London. Series A 253, 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. of the Royal Society of London. Series A 253, 358–379 (1959).
[Crossref]

1956 (1)

1952 (1)

G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti Fond. Giorgio Ronchi 7, 366–372 (1952).

Andresen, M.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

Arnison, M. R.

M. R. Arnison and C. J. R. Sheppard, “A 3d vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Comm. 211, 53–63 (2002).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

Baur, D.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage,” Biophys. J. 77, 2226–2236 (1999).
[Crossref] [PubMed]

Bock, H.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

Boyer, G.

Caorsi, V.

V. Caorsi, E. Ronzitti, G. Vicidomini, S. Krol, G. McConnell, and A. Diaspro “FRET Measurements on Fuzzy Fluorescent Nanostructures,” Microsc. Res. Tech. 70, 452–458 (2007).
[Crossref] [PubMed]

Carlsson, K.

K. Carlsson, “The influence of specimen refractive index, detector signal integration and non uniform scan spees on the imaging properties in confocal microscopy,” J. Microsc. 163, 167–178 (1991).
[Crossref]

Carson, R.

K. Lange and R. Carson, “EM Reconstruction Algorithms for emission and transmission tomography,” J. Comput. Assist. Tomogr. 8, 306–316 (1984).
[PubMed]

Cella, F.

F. Cella, E. Ronzitti, G. Vicidomini, P. P. Mondal, and A. Diaspro “Studying the illumination puzzle towards an isotropic increase of optical resolution,” Proc. of SPIE 6861 (2008).
[Crossref]

Chirico, G.

A. Diaspro, G. Chirico, and M. Collini, “Two photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
[Crossref]

A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, “Photobleaching,” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.16.
[Crossref]

Choudhury, A.

Collini, M.

A. Diaspro, G. Chirico, and M. Collini, “Two photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
[Crossref]

Cox, I. J.

I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. 3, (1986).
[Crossref]

I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291(1982).
[Crossref]

Day, R. N.

G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J.Cell Science 114, 837–838 (2001).
[PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Diaspro, A.

F. Cella, E. Ronzitti, G. Vicidomini, P. P. Mondal, and A. Diaspro “Studying the illumination puzzle towards an isotropic increase of optical resolution,” Proc. of SPIE 6861 (2008).
[Crossref]

P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92, 103902 (2008).
[Crossref]

P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855–1859 (2008).
[Crossref]

V. Caorsi, E. Ronzitti, G. Vicidomini, S. Krol, G. McConnell, and A. Diaspro “FRET Measurements on Fuzzy Fluorescent Nanostructures,” Microsc. Res. Tech. 70, 452–458 (2007).
[Crossref] [PubMed]

A. Diaspro, G. Chirico, and M. Collini, “Two photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
[Crossref]

A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, “Photobleaching,” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.16.
[Crossref]

Dobrucki, J.

A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, “Photobleaching,” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.16.
[Crossref]

Eggeling, C.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

Egner, A.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

Gan, X.

C. J. R. Sheppard, X. Gan, M. Gu, and M. Roy, “Signal-to-Noise Ratio in Confocal Microscopes” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.22.
[Crossref]

Garini, Y.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3–12 (2005).
[Crossref] [PubMed]

Geisler, C.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

Goldberg, B. B.

Gu, M.

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

M. Gu and C. J. R. Sheppard, “Effects of a finite-sized pinhole on 3D image formation in confocal two-photon fluorescence microscopy,” J. Mod. Opt. 40, 2009–2024 (1993).
[Crossref]

M. Gu and C. J. R. Sheppard, “Three-dimensional optical transfer function in a fiber-optical confocal fluorescence microscope using annular lenses,” J. Opt. Soc. Am. A 9, 1993–1999 (1992).
[Crossref]

C. J. R. Sheppard, X. Gan, M. Gu, and M. Roy, “Signal-to-Noise Ratio in Confocal Microscopes” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.22.
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Extended resolution fluorescence microscopy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999).
[Crossref] [PubMed]

Haeberl, O.

O. Haeberl and B. Simon, “Improving lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400–408 (2006).
[Crossref]

Hell, S. W.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

M. Nagorni and S. W. Hell, “Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts,” J. Opt. Soc. Am. A 18, 36–48 (2001).
[Crossref]

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage,” Biophys. J. 77, 2226–2236 (1999).
[Crossref] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

Ibáñez-López, C.

Jakobs, S.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

Jonkman, J. E. N.

J. E. N. Jonkman and E. H. K. Steltzer, “Resolution and contrast in confocal Two-Photon Microscopy” in Confocal and Two Photons: Foundations, Applications and Advances, A. Diaspro Ed. (Wiley-Liss, 2002).

Jovin, T. M.

Juskaitis, R.

Karl, C.

Koester, H. J.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage,” Biophys. J. 77, 2226–2236 (1999).
[Crossref] [PubMed]

Krol, S.

V. Caorsi, E. Ronzitti, G. Vicidomini, S. Krol, G. McConnell, and A. Diaspro “FRET Measurements on Fuzzy Fluorescent Nanostructures,” Microsc. Res. Tech. 70, 452–458 (2007).
[Crossref] [PubMed]

Laczik, Z. J.

Lange, K.

K. Lange and R. Carson, “EM Reconstruction Algorithms for emission and transmission tomography,” J. Comput. Assist. Tomogr. 8, 306–316 (1984).
[PubMed]

Martinez-Corral, M.

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

McConnell, G.

V. Caorsi, E. Ronzitti, G. Vicidomini, S. Krol, G. McConnell, and A. Diaspro “FRET Measurements on Fuzzy Fluorescent Nanostructures,” Microsc. Res. Tech. 70, 452–458 (2007).
[Crossref] [PubMed]

McCutchen, C. W.

Medda, R.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

Mondal, P. P.

P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92, 103902 (2008).
[Crossref]

P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855–1859 (2008).
[Crossref]

F. Cella, E. Ronzitti, G. Vicidomini, P. P. Mondal, and A. Diaspro “Studying the illumination puzzle towards an isotropic increase of optical resolution,” Proc. of SPIE 6861 (2008).
[Crossref]

Nagorni, M.

Neil, M.

O’Neill, E. L.

Patterson, G.

G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J.Cell Science 114, 837–838 (2001).
[PubMed]

Patterson, G. H.

G. H. Patterson and D. W. Piston, “Photobleaching in Two-Photon Excitation Microscopy,” Biophys J. 78, 2159–2162 (2000).
[Crossref] [PubMed]

Pawley, J. B.

J. B. Pawley, “Fundamental limits in confocal microscopy” in Handbook of biological confocal microscopyJ.B. Pawley Ed (Springer, 2006) Chap.2.

Piston, D.

G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J.Cell Science 114, 837–838 (2001).
[PubMed]

Piston, D. W.

G. H. Patterson and D. W. Piston, “Photobleaching in Two-Photon Excitation Microscopy,” Biophys J. 78, 2159–2162 (2000).
[Crossref] [PubMed]

D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes,” Appl. Opt. 34, (1995).
[Crossref] [PubMed]

Ramoino, P.

A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, “Photobleaching,” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.16.
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. of the Royal Society of London. Series A 253, 358–379 (1959).
[Crossref]

Ronzitti, E.

F. Cella, E. Ronzitti, G. Vicidomini, P. P. Mondal, and A. Diaspro “Studying the illumination puzzle towards an isotropic increase of optical resolution,” Proc. of SPIE 6861 (2008).
[Crossref]

V. Caorsi, E. Ronzitti, G. Vicidomini, S. Krol, G. McConnell, and A. Diaspro “FRET Measurements on Fuzzy Fluorescent Nanostructures,” Microsc. Res. Tech. 70, 452–458 (2007).
[Crossref] [PubMed]

Roy, M.

C. J. R. Sheppard, X. Gan, M. Gu, and M. Roy, “Signal-to-Noise Ratio in Confocal Microscopes” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.22.
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

Saavedra, G.

Sandison, D. R.

D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes,” Appl. Opt. 34, (1995).
[Crossref] [PubMed]

Sarafis, V.

Schönle, A.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

Shaw, P. J.

P. J. Shaw, “Comparison of Widefield/Deconvolution and confocal microscopy for three-dimensional Imaging,” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.23.
[Crossref]

Sheppard, C. J. R.

C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
[Crossref] [PubMed]

M. R. Arnison and C. J. R. Sheppard, “A 3d vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Comm. 211, 53–63 (2002).
[Crossref]

M. Gu and C. J. R. Sheppard, “Effects of a finite-sized pinhole on 3D image formation in confocal two-photon fluorescence microscopy,” J. Mod. Opt. 40, 2009–2024 (1993).
[Crossref]

M. Gu and C. J. R. Sheppard, “Three-dimensional optical transfer function in a fiber-optical confocal fluorescence microscope using annular lenses,” J. Opt. Soc. Am. A 9, 1993–1999 (1992).
[Crossref]

I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. 3, (1986).
[Crossref]

I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291(1982).
[Crossref]

C. J. R. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Optica Acta 25, 315–325 (1978).
[Crossref]

T. Wilson and C. J. R. Sheppard, Theory and practice of scanning optical microscopy(AcademicPress, London,1984).

C. J. R. Sheppard, X. Gan, M. Gu, and M. Roy, “Signal-to-Noise Ratio in Confocal Microscopes” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.22.
[Crossref]

Simon, B.

O. Haeberl and B. Simon, “Improving lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400–408 (2006).
[Crossref]

Steltzer, E. H. K.

E. H. K. Steltzer, “Contrast, resolution, pixilation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15–24 (1998).
[Crossref]

J. E. N. Jonkman and E. H. K. Steltzer, “Resolution and contrast in confocal Two-Photon Microscopy” in Confocal and Two Photons: Foundations, Applications and Advances, A. Diaspro Ed. (Wiley-Liss, 2002).

E. H. K. Steltzer, “The intermediate optical system of laser-scanning confocal microscopes”, in Handbook of biological confocal microscopy,” J. B. Pawley Ed (Springer, 2006), Chap. 9.

Stiel, A.-C.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Swan, A. K.

Toraldo di Francia, G.

G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti Fond. Giorgio Ronchi 7, 366–372 (1952).

Uhl, R.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage,” Biophys. J. 77, 2226–2236 (1999).
[Crossref] [PubMed]

Unlu, M. S.

Usai, C.

A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, “Photobleaching,” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.16.
[Crossref]

Vermolen, B. J.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3–12 (2005).
[Crossref] [PubMed]

Verveer, P. J.

Vicidomini, G.

F. Cella, E. Ronzitti, G. Vicidomini, P. P. Mondal, and A. Diaspro “Studying the illumination puzzle towards an isotropic increase of optical resolution,” Proc. of SPIE 6861 (2008).
[Crossref]

P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92, 103902 (2008).
[Crossref]

V. Caorsi, E. Ronzitti, G. Vicidomini, S. Krol, G. McConnell, and A. Diaspro “FRET Measurements on Fuzzy Fluorescent Nanostructures,” Microsc. Res. Tech. 70, 452–458 (2007).
[Crossref] [PubMed]

von Middendorff, C.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

Webb, W. W.

D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes,” Appl. Opt. 34, (1995).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Wenzel, D.

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

William, B. J. D.

Williams, R. M.

D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes,” Appl. Opt. 34, (1995).
[Crossref] [PubMed]

Wilson, T.

M. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Pupil-plane filters for confocal microscope point spread function engineering,” Opt. Lett. 25, 245–247 (2000).
[Crossref]

I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291(1982).
[Crossref]

C. J. R. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Optica Acta 25, 315–325 (1978).
[Crossref]

T. Wilson and C. J. R. Sheppard, Theory and practice of scanning optical microscopy(AcademicPress, London,1984).

Wolf, E.

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field” Proc. of the Royal Society of London. Series A 253, 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. of the Royal Society of London. Series A 253, 358–379 (1959).
[Crossref]

Young, I. T.

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3–12 (2005).
[Crossref] [PubMed]

I. T. Young, “Quantitative Microscopy,” IEEE Eng. Med. Biol. 15, 59–66 (1996).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

Appl. Opt. (2)

D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes,” Appl. Opt. 34, (1995).
[Crossref] [PubMed]

C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92, 103902 (2008).
[Crossref]

Atti Fond. Giorgio Ronchi (1)

G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti Fond. Giorgio Ronchi 7, 366–372 (1952).

Biophys J. (1)

G. H. Patterson and D. W. Piston, “Photobleaching in Two-Photon Excitation Microscopy,” Biophys J. 78, 2159–2162 (2000).
[Crossref] [PubMed]

Biophys. J. (3)

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage,” Biophys. J. 77, 2226–2236 (1999).
[Crossref] [PubMed]

A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93, 3285–3290 (2007).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3–12 (2005).
[Crossref] [PubMed]

Curr. Opin. Struct. Biol. (1)

M. G. L. Gustafsson, “Extended resolution fluorescence microscopy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999).
[Crossref] [PubMed]

IEEE Eng. Med. Biol. (1)

I. T. Young, “Quantitative Microscopy,” IEEE Eng. Med. Biol. 15, 59–66 (1996).
[Crossref]

J. Comput. Assist. Tomogr. (1)

K. Lange and R. Carson, “EM Reconstruction Algorithms for emission and transmission tomography,” J. Comput. Assist. Tomogr. 8, 306–316 (1984).
[PubMed]

J. Microsc. (2)

E. H. K. Steltzer, “Contrast, resolution, pixilation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15–24 (1998).
[Crossref]

K. Carlsson, “The influence of specimen refractive index, detector signal integration and non uniform scan spees on the imaging properties in confocal microscopy,” J. Microsc. 163, 167–178 (1991).
[Crossref]

J. Mod. Opt. (1)

M. Gu and C. J. R. Sheppard, “Effects of a finite-sized pinhole on 3D image formation in confocal two-photon fluorescence microscopy,” J. Mod. Opt. 40, 2009–2024 (1993).
[Crossref]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (3)

J.Cell Science (1)

G. Patterson, R. N. Day, and D. Piston, “Fluorescent protein spectra,” J.Cell Science 114, 837–838 (2001).
[PubMed]

Microsc. Res. Tech. (1)

V. Caorsi, E. Ronzitti, G. Vicidomini, S. Krol, G. McConnell, and A. Diaspro “FRET Measurements on Fuzzy Fluorescent Nanostructures,” Microsc. Res. Tech. 70, 452–458 (2007).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

Opt. Comm. (1)

M. R. Arnison and C. J. R. Sheppard, “A 3d vectorial optical transfer function suitable for arbitrary pupil functions,” Opt. Comm. 211, 53–63 (2002).
[Crossref]

Opt. Commun. (2)

O. Haeberl and B. Simon, “Improving lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams,” Opt. Commun. 259, 400–408 (2006).
[Crossref]

P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two photon excitation microscopy by aperture engineering,” Opt. Commun. 281, 1855–1859 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica Acta (1)

C. J. R. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Optica Acta 25, 315–325 (1978).
[Crossref]

Proc. of SPIE (1)

F. Cella, E. Ronzitti, G. Vicidomini, P. P. Mondal, and A. Diaspro “Studying the illumination puzzle towards an isotropic increase of optical resolution,” Proc. of SPIE 6861 (2008).
[Crossref]

Proc. of the Royal Society of London. Series A (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field” Proc. of the Royal Society of London. Series A 253, 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. of the Royal Society of London. Series A 253, 358–379 (1959).
[Crossref]

Q. Rev. Biophys. (1)

A. Diaspro, G. Chirico, and M. Collini, “Two photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166 (2005).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Other (8)

T. Wilson and C. J. R. Sheppard, Theory and practice of scanning optical microscopy(AcademicPress, London,1984).

J. E. N. Jonkman and E. H. K. Steltzer, “Resolution and contrast in confocal Two-Photon Microscopy” in Confocal and Two Photons: Foundations, Applications and Advances, A. Diaspro Ed. (Wiley-Liss, 2002).

J. B. Pawley, “Fundamental limits in confocal microscopy” in Handbook of biological confocal microscopyJ.B. Pawley Ed (Springer, 2006) Chap.2.

A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, “Photobleaching,” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.16.
[Crossref]

P. J. Shaw, “Comparison of Widefield/Deconvolution and confocal microscopy for three-dimensional Imaging,” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.23.
[Crossref]

E. H. K. Steltzer, “The intermediate optical system of laser-scanning confocal microscopes”, in Handbook of biological confocal microscopy,” J. B. Pawley Ed (Springer, 2006), Chap. 9.

C. J. R. Sheppard, X. Gan, M. Gu, and M. Roy, “Signal-to-Noise Ratio in Confocal Microscopes” in Handbook of biological confocal microscopy, J.B. Pawley Ed (Springer, 2006) Chap.22.
[Crossref]

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Annular filter scheme

Fig. 2.
Fig. 2.

Theoretical PSF for 2PE (a) and CLSM (c) configuration; PSF associated with a finite expected number of photons np =20photons (b),(d). NA=1.4, n=1.518, excitation wavelength 900nm TPE, 400nm CLSM; detection wavelength 500nm (scale bar equal to 100nm)

Fig. 3.
Fig. 3.

Theoretical OTF for 2PE (a) and CLSM (b) configuration; PSF associated with a finite expected number of photons np =20photons (c),(d). NA=1.4, n=1.518, excitation wavelength 900nm TPE, 400nm CLSM; detection wavelength 500nm (bar line is 1.2μm-1).

Fig 4.
Fig 4.

Axial OTF in 2PE (a) and in CLSM (b) scheme for different photon influxes to the detector assuming a particular noise realization; OTF high-frequency region in the insets (c)(d). Dots line in the inset indicate the cut-off frequencies estimated (black dots theoretical, red dots np =20photons, blue dots np =100photons). NA=1.4, n=1.518, excitation wavelength 900nm TPE, 400nm CLSM; detection wavelength 500nm.

Fig. 5.
Fig. 5.

Radial OTF in 2PE (a) and in CLSM (b) scheme for different photon influxes to the detector assuming a particular noise realization; OTF high-frequency region in the insets (c)(d). Dots line in the inset indicate the cut-off frequencies estimated (black dots theoretical, red dots np =20photons, blue dots np =100photons). NA=1.4, n=1.518, excitation wavelength 900nm TPE, 400nm CLSM; detection wavelength 500nm.

Fig. 6.
Fig. 6.

Axial OTF for 2PE (a) and CLSM (b) scheme for different filters.. OTF high-frequency region in the insets (c)(d). NA=1.4, n=1.518, excitation wavelength 900nm TPE, 400nm CLSM; detection wavelength 500nm.

Fig. 7.
Fig. 7.

Radial OTF for 2PE (a) and CLSM (b) scheme for different filters. OTF high-frequency region in the insets (c)(d). NA=1.4, n=1.518, excitation wavelength 900nm TPE, 400nm CLSM; detection wavelength 500nm.

Fig. 8.
Fig. 8.

Axial OTF in 2PE (a) and in CLSM (b) scheme for filter configuration in shot-noise condition assuming a particular noise realization; OTF high-frequency region in the insets (c)(d).Dots line in the inset indicate the cut-off frequencies estimated (black theoretical, red np =20photons, blue filter). NA=1.4, n=1.518, excitation wavelength 900nm TPE, 400nm CLSM; detection wavelength 500nm.

Fig. 9.
Fig. 9.

Radial OTF in 2PE (a) and in CLSM (b) scheme for filter configuration in shot-noise condition assuming a particular noise realization; OTF high-frequency region in the insets (c)(d). Dots line in the inset indicate the cut-off frequencies estimated (black theoretical, red np =20photons, blue filter). NA=1.4, n=1.518, excitation wavelength 900nm TPE, 400nm CLSM; detection wavelength 500nm.

Tables (3)

Tables Icon

Table 1. Estimation of the effective cut-off frequency values varying the number of photons emitted for pixel (NA1.4; refractive index 1,51; excitation wavelength 900nm 2PE, 400nm CLSM; detection wavelength 500nm)..

Tables Icon

Table 2. Effective axial cut-off frequencies assuming a finite amount of photons to the detector in filtering scheme. Data in round brackets represent the filter percentage improvement respect to the unfiltered case.

Tables Icon

Table 3. Effective radial cut-off frequencies assuming a finite amount of photons to the detector in filtering scheme. Data in round brackets represent the filter percentage improvement respect to the unfiltered case.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

PS F system ( u , v , ϕ P ) = [ h ex ( u , v , ϕ P ) 2 ] m · [ D ( v ) h em ( u β , v β , ϕ P ) 2 ]
{ u = k r P cos ϑ P sin 2 α v = k r P sin θ P sin α
PS F CLSM ( u , v , ϕ P ) = ( h ex ( u , v , ϕ P ) 2 ) · ( h ex ( u β , v β , ϕ P ) 2 )
PS F 2 PE ( u , v , ϕ P ) = ( h ex ( u , v , ϕ P ) 2 ) 2
h ( u , v ) 2 = 1 2 π 0 2 π E ( u , v , ϕ P ) 2 d ϕ P
{ e x = iA π 0 α 0 2 π K ( θ , ϕ ) cos θ sin θ { cos θ + ( 1 cos θ ) sin 2 ϕ } e ik r p cos ε dθdϕ e y = iA π 0 α 0 2 π K ( θ , ϕ ) cos θ sin θ ( 1 cos θ ) cos ϕ sin ϕ e ik r p cos ε dθdϕ e z = iA π 0 α 0 2 π K ( θ , ϕ ) cos θ sin 2 θ cos ϕ e ik r p cos ε dθdϕ
cos ε = cos θ cos θ P + sin θ sin θ P cos ( ϕ ϕ P )
K ( θ ) = { 0 α 2 ( 1 C 100 ) < θ < α 2 ( 1 + C 100 ) 1 otherwise
P ( n ) = ( γt ) n e γt n !

Metrics