Abstract

Fluorophores that are fixed during image acquisition produce a diffraction pattern that is characteristic of the orientation of the fluorophore’s underlying dipole. Fluorescence localization microscopy techniques such as PALM and STORM achieve super-resolution by applying Gaussian-based fitting algorithms to in-focus images of individual fluorophores; when applied to fixed dipoles, this can lead to a bias in the range of 5–20 nm. We introduce a method for the joint estimation of position and orientation of dipoles, based on the representation of a physically realistic image formation model as a 3-D steerable filter. Our approach relies on a single, defocused acquisition. We establish theoretical, localization-based resolution limits on estimation accuracy using Cramér-Rao bounds, and experimentally show that estimation accuracies of at least 5 nm for position and of at least 2 degrees for orientation can be achieved. Patterns generated by applying the image formation model to estimated position/orientation pairs closely match experimental observations.

© 2009 Optical Society of America

PDF Article
OSA Recommended Articles
A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles

François Aguet, Dimitri Van De Ville, and Michael Unser
Opt. Express 13(26) 10503-10522 (2005)

Improved localization accuracy in stochastic super-resolution fluorescence microscopy by K-factor image deshadowing

Tali Ilovitsh, Amihai Meiri, Carl G. Ebeling, Rajesh Menon, Jordan M. Gerton, Erik M. Jorgensen, and Zeev Zalevsky
Biomed. Opt. Express 5(1) 244-258 (2014)

Measuring localization performance of super-resolution algorithms on very active samples

Steve Wolter, Ulrike Endesfelder, Sebastian van de Linde, Mike Heilemann, and Markus Sauer
Opt. Express 19(8) 7020-7033 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, “Microscopy and its focal switch,” Nature Methods 6, 24–32 (2009).
    [Crossref] [PubMed]
  2. G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297, 1873–1877 (2002).
    [Crossref] [PubMed]
  3. M. Bates, T. R. Blosser, and X. Zhuang ,“Short-range spectroscopic ruler based on a single-molecule optical switch,” Phys. Rev. Lett. 94, 108101(1–4) (2005).
    [Crossref] [PubMed]
  4. K. A. Lidke, B. Rieger, T. M. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using blinking statistics,” Opt. Express 13, 7052–7062 (2005).
    [Crossref] [PubMed]
  5. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
    [Crossref] [PubMed]
  6. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref] [PubMed]
  7. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
    [Crossref] [PubMed]
  8. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
    [Crossref] [PubMed]
  9. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
    [Crossref] [PubMed]
  10. A. Yildiz, J. N. Forkey, S. A. McKinney, H. Taekjip, Y. E. Goldman, and P. R. Selvin, “Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
    [Crossref] [PubMed]
  11. R. J. Ober, S. Ram, and S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86, 1185–1200 (2004).
    [Crossref] [PubMed]
  12. F. Aguet, D. Van De Ville, and M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10,503–10,522 (2005).
    [Crossref]
  13. A. P. Bartko and R. M. Dickson, “Imaging three-dimensional single molecule orientations,” J. Phys. Chem. B 103, 11,237–11,241 (1999).
  14. R. Schuster, M. Barth, A. Gruber, and F. Cichos, “Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots,” Chem. Phys. Lett. 413, 280–283 (2005).
    [Crossref]
  15. J. Enderlein, E. Toprak, and P. R. Selvin, “Polarization effect on position accuracy of fluorophore localization,” Opt. Express 14, 8111–8120 (2006).
    [Crossref] [PubMed]
  16. E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
    [Crossref] [PubMed]
  17. M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. A 20, 554–559 (2003).
    [Crossref]
  18. D. P. Patra, I. Gregor, and J. Enderlein, “Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies,” J. Phys. Chem. A 108, 6836–6841 (2004).
    [Crossref]
  19. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
    [Crossref]
  20. Z. Sikorski and L. M. Davis, “Engineering the collected field for single-molecule orientation determination,” Opt. Express 16, 3660–3673 (2008).
    [Crossref] [PubMed]
  21. M. R. Foreman, C. M. Romero, and P. Török, “Determination of the three-dimensional orientation of single molecules,” Opt. Lett. 33, 1020–1022 (2008).
    [Crossref] [PubMed]
  22. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
    [Crossref] [PubMed]
  23. W. T. Freeman and E. H. Adelson, “The design and use of steerable filters,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991).
    [Crossref]
  24. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B 4, 337–350 (1987).
    [Crossref]
  25. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
    [Crossref]
  26. S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 8, 1601–1613 (1991).
    [Crossref]
  27. E. Wolf, “Electromagnetic diffraction in optical systems—I. An integral representation of the image field,” Proc. R. Soc. London A 253, 349–357 (1959).
    [Crossref]
  28. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
    [Crossref]
  29. S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
    [Crossref]
  30. P. Török and R. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt. 36, 2305–2312 (1997).
    [Crossref] [PubMed]
  31. O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy,” Opt. Commun. 216, 55–63 (2003).
    [Crossref]
  32. A. Egner and S. W. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
    [Crossref]
  33. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1959).
  34. M. Jacob and M. Unser, “Design of steerable filters for feature detection using Canny-like criteria,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 1007–1019 (2004).
    [Crossref]
  35. K. A. Winick, “Cramér-Rao lower bounds on the performance of charge-coupled-device optical position estimators,” J. Opt. Soc. Am. A 3, 1809–1815 (1986).
    [Crossref]
  36. D. L. Snyder and M. I. Miller, Random point processes in time and space, 2nd ed. (Springer, 1991).
  37. M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gösch, R. A. Leitgeb, and T. Lasser, “Dual-color total internal reflection fluorescence cross-correlation spectroscopy,” J. Biomed. Opt. 11, 040502(1–3) (2006).
    [Crossref] [PubMed]
  38. M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
    [Crossref]
  39. J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060–2063 (2001).
    [Crossref] [PubMed]
  40. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
    [Crossref] [PubMed]
  41. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
    [Crossref] [PubMed]
  42. T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nature Methods 5, 1027–1030 (2008).
    [Crossref] [PubMed]

2009 (2)

S. W. Hell, “Microscopy and its focal switch,” Nature Methods 6, 24–32 (2009).
[Crossref] [PubMed]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

2008 (4)

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nature Methods 5, 1027–1030 (2008).
[Crossref] [PubMed]

Z. Sikorski and L. M. Davis, “Engineering the collected field for single-molecule orientation determination,” Opt. Express 16, 3660–3673 (2008).
[Crossref] [PubMed]

M. R. Foreman, C. M. Romero, and P. Török, “Determination of the three-dimensional orientation of single molecules,” Opt. Lett. 33, 1020–1022 (2008).
[Crossref] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref] [PubMed]

2006 (6)

M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gösch, R. A. Leitgeb, and T. Lasser, “Dual-color total internal reflection fluorescence cross-correlation spectroscopy,” J. Biomed. Opt. 11, 040502(1–3) (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
[Crossref] [PubMed]

J. Enderlein, E. Toprak, and P. R. Selvin, “Polarization effect on position accuracy of fluorophore localization,” Opt. Express 14, 8111–8120 (2006).
[Crossref] [PubMed]

E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
[Crossref] [PubMed]

2005 (4)

F. Aguet, D. Van De Ville, and M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10,503–10,522 (2005).
[Crossref]

M. Bates, T. R. Blosser, and X. Zhuang ,“Short-range spectroscopic ruler based on a single-molecule optical switch,” Phys. Rev. Lett. 94, 108101(1–4) (2005).
[Crossref] [PubMed]

K. A. Lidke, B. Rieger, T. M. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using blinking statistics,” Opt. Express 13, 7052–7062 (2005).
[Crossref] [PubMed]

R. Schuster, M. Barth, A. Gruber, and F. Cichos, “Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots,” Chem. Phys. Lett. 413, 280–283 (2005).
[Crossref]

2004 (4)

M. Jacob and M. Unser, “Design of steerable filters for feature detection using Canny-like criteria,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 1007–1019 (2004).
[Crossref]

R. J. Ober, S. Ram, and S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86, 1185–1200 (2004).
[Crossref] [PubMed]

D. P. Patra, I. Gregor, and J. Enderlein, “Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies,” J. Phys. Chem. A 108, 6836–6841 (2004).
[Crossref]

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
[Crossref]

2003 (4)

M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. A 20, 554–559 (2003).
[Crossref]

A. Yildiz, J. N. Forkey, S. A. McKinney, H. Taekjip, Y. E. Goldman, and P. R. Selvin, “Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[Crossref] [PubMed]

O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy,” Opt. Commun. 216, 55–63 (2003).
[Crossref]

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

2002 (2)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref] [PubMed]

G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297, 1873–1877 (2002).
[Crossref] [PubMed]

2001 (2)

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
[Crossref] [PubMed]

J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060–2063 (2001).
[Crossref] [PubMed]

2000 (1)

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref] [PubMed]

1999 (2)

A. Egner and S. W. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

A. P. Bartko and R. M. Dickson, “Imaging three-dimensional single molecule orientations,” J. Phys. Chem. B 103, 11,237–11,241 (1999).

1997 (1)

1993 (1)

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

1991 (2)

1987 (1)

1986 (1)

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[Crossref]

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems—I. An integral representation of the image field,” Proc. R. Soc. London A 253, 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[Crossref]

Adelson, E. H.

W. T. Freeman and E. H. Adelson, “The design and use of steerable filters,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991).
[Crossref]

Aguet, F.

F. Aguet, D. Van De Ville, and M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10,503–10,522 (2005).
[Crossref]

Alivisatos, A. P.

J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060–2063 (2001).
[Crossref] [PubMed]

Axelrod, D.

Barth, M.

R. Schuster, M. Barth, A. Gruber, and F. Cichos, “Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots,” Chem. Phys. Lett. 413, 280–283 (2005).
[Crossref]

Bartko, A. P.

A. P. Bartko and R. M. Dickson, “Imaging three-dimensional single molecule orientations,” J. Phys. Chem. B 103, 11,237–11,241 (1999).

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
[Crossref] [PubMed]

M. Bates, T. R. Blosser, and X. Zhuang ,“Short-range spectroscopic ruler based on a single-molecule optical switch,” Phys. Rev. Lett. 94, 108101(1–4) (2005).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Blom, H.

M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gösch, R. A. Leitgeb, and T. Lasser, “Dual-color total internal reflection fluorescence cross-correlation spectroscopy,” J. Biomed. Opt. 11, 040502(1–3) (2006).
[Crossref] [PubMed]

Blosser, T. R.

M. Bates, T. R. Blosser, and X. Zhuang ,“Short-range spectroscopic ruler based on a single-molecule optical switch,” Phys. Rev. Lett. 94, 108101(1–4) (2005).
[Crossref] [PubMed]

Böhmer, M.

M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. A 20, 554–559 (2003).
[Crossref]

Bonifacio, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1959).

Cheezum, M. K.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
[Crossref] [PubMed]

Cichos, F.

R. Schuster, M. Barth, A. Gruber, and F. Cichos, “Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots,” Chem. Phys. Lett. 413, 280–283 (2005).
[Crossref]

Cremer, C.

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Davidson, M. W.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Davis, L. M.

Dickson, R. M.

A. P. Bartko and R. M. Dickson, “Imaging three-dimensional single molecule orientations,” J. Phys. Chem. B 103, 11,237–11,241 (1999).

Eggeling, C.

M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gösch, R. A. Leitgeb, and T. Lasser, “Dual-color total internal reflection fluorescence cross-correlation spectroscopy,” J. Biomed. Opt. 11, 040502(1–3) (2006).
[Crossref] [PubMed]

Egner, A.

A. Egner and S. W. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

Enderlein, J.

J. Enderlein, E. Toprak, and P. R. Selvin, “Polarization effect on position accuracy of fluorophore localization,” Opt. Express 14, 8111–8120 (2006).
[Crossref] [PubMed]

E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
[Crossref] [PubMed]

D. P. Patra, I. Gregor, and J. Enderlein, “Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies,” J. Phys. Chem. A 108, 6836–6841 (2004).
[Crossref]

M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. A 20, 554–559 (2003).
[Crossref]

Fetter, R. D.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[Crossref]

Foreman, M. R.

Forkey, J. N.

A. Yildiz, J. N. Forkey, S. A. McKinney, H. Taekjip, Y. E. Goldman, and P. R. Selvin, “Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[Crossref] [PubMed]

Freeman, W. T.

W. T. Freeman and E. H. Adelson, “The design and use of steerable filters,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991).
[Crossref]

Galbraith, C. G.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

Galbraith, J. A.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

Gibson, S. F.

Gillette, J. M.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

Goldman, Y. E.

E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
[Crossref] [PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, H. Taekjip, Y. E. Goldman, and P. R. Selvin, “Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[Crossref] [PubMed]

Gösch, M.

M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gösch, R. A. Leitgeb, and T. Lasser, “Dual-color total internal reflection fluorescence cross-correlation spectroscopy,” J. Biomed. Opt. 11, 040502(1–3) (2006).
[Crossref] [PubMed]

Gosse, J. A.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nature Methods 5, 1027–1030 (2008).
[Crossref] [PubMed]

Gould, T. J.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nature Methods 5, 1027–1030 (2008).
[Crossref] [PubMed]

Gregor, I.

D. P. Patra, I. Gregor, and J. Enderlein, “Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies,” J. Phys. Chem. A 108, 6836–6841 (2004).
[Crossref]

Gruber, A.

R. Schuster, M. Barth, A. Gruber, and F. Cichos, “Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots,” Chem. Phys. Lett. 413, 280–283 (2005).
[Crossref]

Gudheti, M. V.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nature Methods 5, 1027–1030 (2008).
[Crossref] [PubMed]

Guilford, W. H.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
[Crossref] [PubMed]

Gunewardene, M. S.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nature Methods 5, 1027–1030 (2008).
[Crossref] [PubMed]

Ha, T.

E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
[Crossref] [PubMed]

Hadwen, B. J.

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

Haeberlé, O.

O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy,” Opt. Commun. 216, 55–63 (2003).
[Crossref]

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref] [PubMed]

Heintzmann, R.

Hell, S. W.

S. W. Hell, “Microscopy and its focal switch,” Nature Methods 6, 24–32 (2009).
[Crossref] [PubMed]

A. Egner and S. W. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Hellen, E. H.

Hess, H. F.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Hess, S. T.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nature Methods 5, 1027–1030 (2008).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

Hu, J.

J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060–2063 (2001).
[Crossref] [PubMed]

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref] [PubMed]

Jacob, M.

M. Jacob and M. Unser, “Design of steerable filters for feature detection using Canny-like criteria,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 1007–1019 (2004).
[Crossref]

Jovin, T. M.

Kanchanawong, P.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

Lanni, F.

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref] [PubMed]

Lasser, T.

M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gösch, R. A. Leitgeb, and T. Lasser, “Dual-color total internal reflection fluorescence cross-correlation spectroscopy,” J. Biomed. Opt. 11, 040502(1–3) (2006).
[Crossref] [PubMed]

Leitgeb, R. A.

M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gösch, R. A. Leitgeb, and T. Lasser, “Dual-color total internal reflection fluorescence cross-correlation spectroscopy,” J. Biomed. Opt. 11, 040502(1–3) (2006).
[Crossref] [PubMed]

Leutenegger, M.

M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gösch, R. A. Leitgeb, and T. Lasser, “Dual-color total internal reflection fluorescence cross-correlation spectroscopy,” J. Biomed. Opt. 11, 040502(1–3) (2006).
[Crossref] [PubMed]

Li, L.-s.

J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060–2063 (2001).
[Crossref] [PubMed]

Lidke, K. A.

Lieb, M. A.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297, 1873–1877 (2002).
[Crossref] [PubMed]

Manley, S.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

Manna, L.

J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060–2063 (2001).
[Crossref] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

McKinney, S. A.

E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
[Crossref] [PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, H. Taekjip, Y. E. Goldman, and P. R. Selvin, “Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[Crossref] [PubMed]

Novotny, L.

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
[Crossref]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref] [PubMed]

Ober, R. J.

R. J. Ober, S. Ram, and S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86, 1185–1200 (2004).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Patra, D. P.

D. P. Patra, I. Gregor, and J. Enderlein, “Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies,” J. Phys. Chem. A 108, 6836–6841 (2004).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297, 1873–1877 (2002).
[Crossref] [PubMed]

Petschek, R. G.

E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
[Crossref] [PubMed]

Ram, S.

R. J. Ober, S. Ram, and S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86, 1185–1200 (2004).
[Crossref] [PubMed]

Reiner, G.

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[Crossref]

Rieger, B.

Robbins, M. S.

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

Romero, C. M.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Schuster, R.

R. Schuster, M. Barth, A. Gruber, and F. Cichos, “Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots,” Chem. Phys. Lett. 413, 280–283 (2005).
[Crossref]

Selvin, P. R.

E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
[Crossref] [PubMed]

J. Enderlein, E. Toprak, and P. R. Selvin, “Polarization effect on position accuracy of fluorophore localization,” Opt. Express 14, 8111–8120 (2006).
[Crossref] [PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, H. Taekjip, Y. E. Goldman, and P. R. Selvin, “Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[Crossref] [PubMed]

Shtengel, G.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

Sick, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref] [PubMed]

Sikorski, Z.

Sougrat, R.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Stelzer, E. H. K.

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Syed, S.

E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
[Crossref] [PubMed]

Taekjip, H.

A. Yildiz, J. N. Forkey, S. A. McKinney, H. Taekjip, Y. E. Goldman, and P. R. Selvin, “Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[Crossref] [PubMed]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref] [PubMed]

Toprak, E.

E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
[Crossref] [PubMed]

J. Enderlein, E. Toprak, and P. R. Selvin, “Polarization effect on position accuracy of fluorophore localization,” Opt. Express 14, 8111–8120 (2006).
[Crossref] [PubMed]

Török, P.

Unser, M.

F. Aguet, D. Van De Ville, and M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10,503–10,522 (2005).
[Crossref]

M. Jacob and M. Unser, “Design of steerable filters for feature detection using Canny-like criteria,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 1007–1019 (2004).
[Crossref]

Varga, R.

Verkhusha, V. V.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nature Methods 5, 1027–1030 (2008).
[Crossref] [PubMed]

Ville, D. Van De

F. Aguet, D. Van De Ville, and M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10,503–10,522 (2005).
[Crossref]

Walker, W. F.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
[Crossref] [PubMed]

Wang, L.-w.

J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060–2063 (2001).
[Crossref] [PubMed]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref] [PubMed]

Ward, S.

R. J. Ober, S. Ram, and S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86, 1185–1200 (2004).
[Crossref] [PubMed]

Waterman, C. M.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref] [PubMed]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[Crossref]

Widengren, J.

M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gösch, R. A. Leitgeb, and T. Lasser, “Dual-color total internal reflection fluorescence cross-correlation spectroscopy,” J. Biomed. Opt. 11, 040502(1–3) (2006).
[Crossref] [PubMed]

Winick, K. A.

Wolf, E.

E. Wolf, “Electromagnetic diffraction in optical systems—I. An integral representation of the image field,” Proc. R. Soc. London A 253, 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[Crossref]

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1959).

Yang, W.

J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060–2063 (2001).
[Crossref] [PubMed]

Yildiz, A.

A. Yildiz, J. N. Forkey, S. A. McKinney, H. Taekjip, Y. E. Goldman, and P. R. Selvin, “Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[Crossref] [PubMed]

Yin, S.-R.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nature Methods 5, 1027–1030 (2008).
[Crossref] [PubMed]

Zavislan, J. M.

Zhuang, X.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
[Crossref] [PubMed]

M. Bates, T. R. Blosser, and X. Zhuang ,“Short-range spectroscopic ruler based on a single-molecule optical switch,” Phys. Rev. Lett. 94, 108101(1–4) (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Biophys. J. (4)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
[Crossref] [PubMed]

R. J. Ober, S. Ram, and S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86, 1185–1200 (2004).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

R. Schuster, M. Barth, A. Gruber, and F. Cichos, “Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots,” Chem. Phys. Lett. 413, 280–283 (2005).
[Crossref]

IEEE Trans. Electron Devices (1)

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

M. Jacob and M. Unser, “Design of steerable filters for feature detection using Canny-like criteria,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 1007–1019 (2004).
[Crossref]

W. T. Freeman and E. H. Adelson, “The design and use of steerable filters,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991).
[Crossref]

J. Biomed. Opt. (1)

M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gösch, R. A. Leitgeb, and T. Lasser, “Dual-color total internal reflection fluorescence cross-correlation spectroscopy,” J. Biomed. Opt. 11, 040502(1–3) (2006).
[Crossref] [PubMed]

J. Microsc. (2)

A. Egner and S. W. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (1)

D. P. Patra, I. Gregor, and J. Enderlein, “Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies,” J. Phys. Chem. A 108, 6836–6841 (2004).
[Crossref]

J. Phys. Chem. B (1)

A. P. Bartko and R. M. Dickson, “Imaging three-dimensional single molecule orientations,” J. Phys. Chem. B 103, 11,237–11,241 (1999).

Nature Methods (3)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).
[Crossref] [PubMed]

S. W. Hell, “Microscopy and its focal switch,” Nature Methods 6, 24–32 (2009).
[Crossref] [PubMed]

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nature Methods 5, 1027–1030 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy,” Opt. Commun. 216, 55–63 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[Crossref]

Phys. Rev. Lett. (2)

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref] [PubMed]

M. Bates, T. R. Blosser, and X. Zhuang ,“Short-range spectroscopic ruler based on a single-molecule optical switch,” Phys. Rev. Lett. 94, 108101(1–4) (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).
[Crossref] [PubMed]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref] [PubMed]

Proc. R. Soc. London A (2)

E. Wolf, “Electromagnetic diffraction in optical systems—I. An integral representation of the image field,” Proc. R. Soc. London A 253, 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
[Crossref]

Science (5)

A. Yildiz, J. N. Forkey, S. A. McKinney, H. Taekjip, Y. E. Goldman, and P. R. Selvin, “Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[Crossref] [PubMed]

G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297, 1873–1877 (2002).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060–2063 (2001).
[Crossref] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref] [PubMed]

Other (2)

D. L. Snyder and M. I. Miller, Random point processes in time and space, 2nd ed. (Springer, 1991).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1959).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics