Abstract

A wavelength-scale cavity is generated by printing a carbonaceous nano-block on a photonic-crystal waveguide. The nanometer-size carbonaceous block is grown at a pre-determined region by the electron-beam-induced deposition method. The wavelength-scale photonic-crystal cavity operates as a single mode laser, near 1550 nm with threshold of ~100 μW at room temperature. Finite-difference time-domain computations show that a high-quality-factor cavity mode is defined around the nano-block with resonant wavelength slightly longer than the dispersion-edge of the photonic-crystal waveguide. Measured near-field images exhibit photon distribution well-localized in the proximity of the printed nano-block. Linearly-polarized emission along the vertical direction is also observed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  2. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
    [CrossRef] [PubMed]
  3. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
    [CrossRef]
  4. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  5. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
    [CrossRef] [PubMed]
  6. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
    [CrossRef] [PubMed]
  7. M. Lon?ar, A. Scherer, and Y. Qui, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
    [CrossRef]
  8. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  9. S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008).
    [CrossRef] [PubMed]
  10. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
    [CrossRef]
  11. S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008).
    [CrossRef] [PubMed]
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, New York, 1995).
  13. Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
    [CrossRef] [PubMed]
  14. K. Nozaki, H. Watanabe, and T. Baba, "Photonic crystal nanolasers monolithically integrated with passive waveguide for efficient light extraction," Appl. Phys. Lett. 92, 021108 (2008).
    [CrossRef]
  15. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
    [CrossRef]
  16. K. Hennessy, C. Högerle, E. L. Hu, A. Badolato, and A. Imamo?lu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006).
    [CrossRef]
  17. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238 (2006).
    [CrossRef] [PubMed]
  18. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008).
    [CrossRef]
  19. M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y-H. Lee, "Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots," Opt. Express 16, 9829 (2008).
    [CrossRef] [PubMed]
  20. H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622 (2008).
    [CrossRef]
  21. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, P. Viktorovitch, "Microlasers based on effective index confined slow light modes in photonic crystal waveguides," Opt. Express 16, 6331 (2008).
    [CrossRef] [PubMed]
  22. M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, "Reconfigurable microfiber-coupled photonic crystal resonator," Opt. Express 15, 17241 (2007).
    [CrossRef] [PubMed]
  23. C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, B. J. Eggleton, "Reconfigurable microfluidic photonic crystal slab cavities," Opt. Express 16, 15887 (2008).
    [CrossRef] [PubMed]
  24. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
    [CrossRef]
  25. S. Tomljenovic-Hanic, C. M. Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka and S. Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Express 15, 17248 (2007).
    [CrossRef] [PubMed]
  26. P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, "Local infiltration of planar photonic crystals with UV-curable polymers," J. Opt. Soc. Am. B 25, 1562 (2008).
    [CrossRef]
  27. M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
    [CrossRef]
  28. N. Silvis-Cividjian, C. W. Hagen, P. Kruit, M. A. J. v.d. Stam, and H. B. Groen, "Direct fabrication of nanowires in an electron microscope," Appl. Phys. Lett. 82, 3514 (2003).
    [CrossRef]
  29. M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 (2000).
    [CrossRef] [PubMed]
  30. S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, "Characteristics of a stick resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004).
    [CrossRef]
  31. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1998).
  32. We used the following equation to estimate the absorption loss of the CNB: 2?/(?Qabs) = 2?/? (1/Qm-1/Qt) [33], where 2?/(?Qabs), ?, Qm and Qt are the absorption loss, resonant wavelength, measured and theoretical Q factor respectively. The effect of the fabrication imperfection is included in this estimated absorption loss.
  33. M. Borselli, T. J. Johnson and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
    [CrossRef] [PubMed]
  34. M. W. McCutcheon and M. Lon?ar, "Design of silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond crystal," Opt. Express 16, 19136 (2008).
    [CrossRef]

2008 (10)

S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008).
[CrossRef] [PubMed]

S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008).
[CrossRef] [PubMed]

K. Nozaki, H. Watanabe, and T. Baba, "Photonic crystal nanolasers monolithically integrated with passive waveguide for efficient light extraction," Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y-H. Lee, "Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots," Opt. Express 16, 9829 (2008).
[CrossRef] [PubMed]

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622 (2008).
[CrossRef]

S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, P. Viktorovitch, "Microlasers based on effective index confined slow light modes in photonic crystal waveguides," Opt. Express 16, 6331 (2008).
[CrossRef] [PubMed]

C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, B. J. Eggleton, "Reconfigurable microfluidic photonic crystal slab cavities," Opt. Express 16, 15887 (2008).
[CrossRef] [PubMed]

P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, "Local infiltration of planar photonic crystals with UV-curable polymers," J. Opt. Soc. Am. B 25, 1562 (2008).
[CrossRef]

M. W. McCutcheon and M. Lon?ar, "Design of silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond crystal," Opt. Express 16, 19136 (2008).
[CrossRef]

2007 (4)

S. Tomljenovic-Hanic, C. M. Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka and S. Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Express 15, 17248 (2007).
[CrossRef] [PubMed]

M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, "Reconfigurable microfiber-coupled photonic crystal resonator," Opt. Express 15, 17241 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

2006 (3)

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

K. Hennessy, C. Högerle, E. L. Hu, A. Badolato, and A. Imamo?lu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238 (2006).
[CrossRef] [PubMed]

2005 (5)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

M. Borselli, T. J. Johnson and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

2004 (4)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, "Characteristics of a stick resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
[CrossRef] [PubMed]

2003 (3)

M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
[CrossRef]

N. Silvis-Cividjian, C. W. Hagen, P. Kruit, M. A. J. v.d. Stam, and H. B. Groen, "Direct fabrication of nanowires in an electron microscope," Appl. Phys. Lett. 82, 3514 (2003).
[CrossRef]

M. Lon?ar, A. Scherer, and Y. Qui, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

2000 (1)

M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 (2000).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Anand, S.

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

Anna, C.

M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
[CrossRef]

Anne, M. R.

M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
[CrossRef]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Baba, T.

K. Nozaki, H. Watanabe, and T. Baba, "Photonic crystal nanolasers monolithically integrated with passive waveguide for efficient light extraction," Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008).
[CrossRef] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

K. Hennessy, C. Högerle, E. L. Hu, A. Badolato, and A. Imamo?lu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Baehr-Jones, T.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Balet, L.

Balog, S.

Barrelet, C. J.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622 (2008).
[CrossRef]

Bog, U.

Bordas, F.

Borselli, M.

Bouwmeetster, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

Bozio, R.

Bulla, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Charlotte, C. A.

M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
[CrossRef]

Choi, J. H.

Choi, Y. S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

Chow, E.

Claus, J. H.

M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Dorte, N. M.

M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
[CrossRef]

Dreiser, J.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Dunbar, L. A.

Dyer, M. J.

M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 (2000).
[CrossRef] [PubMed]

Eggleton, B. J.

El-Kallassi, P.

Englund, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Faraon, A.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Ferrini, R.

Fiore, A.

Francardi, M.

Fushman, I.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Gardin, S.

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Gerardino, A.

Girolami, G.

Grillet, C.

Grot, A.

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Hagen, C. W.

N. Silvis-Cividjian, C. W. Hagen, P. Kruit, M. A. J. v.d. Stam, and H. B. Groen, "Direct fabrication of nanowires in an electron microscope," Appl. Phys. Lett. 82, 3514 (2003).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

K. Hennessy, C. Högerle, E. L. Hu, A. Badolato, and A. Imamo?lu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Hochberg, M.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

Högerle, C.

K. Hennessy, C. Högerle, E. L. Hu, A. Badolato, and A. Imamo?lu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

Houdré, R.

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

K. Hennessy, C. Högerle, E. L. Hu, A. Badolato, and A. Imamo?lu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Hwang, I.-K.

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

K. Hennessy, C. Högerle, E. L. Hu, A. Badolato, and A. Imamo?lu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Johnson, T. J.

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Karnutsch, C.

Kelly, T. F.

M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 (2000).
[CrossRef] [PubMed]

Kim, G.-H.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, "Characteristics of a stick resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, J.-Y.

Kim, M.-K.

Kim, S. H.

Kim, S.-B.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, "Characteristics of a stick resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kim, S.-H.

M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y-H. Lee, "Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots," Opt. Express 16, 9829 (2008).
[CrossRef] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, "Characteristics of a stick resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004).
[CrossRef]

Kim, S.-K.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, "Characteristics of a stick resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004).
[CrossRef]

Kita, S.

Krauss, T. F.

Kristian, M.

M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
[CrossRef]

Kruit, P.

N. Silvis-Cividjian, C. W. Hagen, P. Kruit, M. A. J. v.d. Stam, and H. B. Groen, "Direct fabrication of nanowires in an electron microscope," Appl. Phys. Lett. 82, 3514 (2003).
[CrossRef]

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Lee, M. W.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, S. K.

Lee, Y. H.

Lee, Y.-H.

M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, "Reconfigurable microfiber-coupled photonic crystal resonator," Opt. Express 15, 17241 (2007).
[CrossRef] [PubMed]

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, "Characteristics of a stick resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Lee, Y-H.

Letartre, X.

Li, L.

Lieber, C. M.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622 (2008).
[CrossRef]

Loncar, M.

M. W. McCutcheon and M. Lon?ar, "Design of silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond crystal," Opt. Express 16, 19136 (2008).
[CrossRef]

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

M. Lon?ar, A. Scherer, and Y. Qui, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

Lourie, O.

M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 (2000).
[CrossRef] [PubMed]

Luther-Davies, B.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

Martz, J.

Maune, B.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

McCutcheon, M. W.

McNab, S. J.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

McPhedran, R. C.

Michael, B.

M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
[CrossRef]

Mirkarimi, L. W.

Moloni, K.

M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 (2000).
[CrossRef] [PubMed]

Monat, C.

Mulot, M.

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Noda, S.

Nozaki, K.

K. Nozaki, H. Watanabe, and T. Baba, "Photonic crystal nanolasers monolithically integrated with passive waveguide for efficient light extraction," Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008).
[CrossRef] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

O’Faolain, L.

O'Boyle, M.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Painter, O.

M. Borselli, T. J. Johnson and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Park, H.-G.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622 (2008).
[CrossRef]

M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y-H. Lee, "Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots," Opt. Express 16, 9829 (2008).
[CrossRef] [PubMed]

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, "Characteristics of a stick resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Peter, B.

M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
[CrossRef]

Petroff, P.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Psaltis, D.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

Qian, F.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622 (2008).
[CrossRef]

Qiu, Y. M.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

Qui, Y.

M. Lon?ar, A. Scherer, and Y. Qui, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

Rahmani, A.

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

Regrency, P.

Ruoff, R. S.

M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 (2000).
[CrossRef] [PubMed]

Scherer, A.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

M. Lon?ar, A. Scherer, and Y. Qui, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Seassal, C.

Seo, M.-K.

Sigalas, M.

Silvis-Cividjian, N.

N. Silvis-Cividjian, C. W. Hagen, P. Kruit, M. A. J. v.d. Stam, and H. B. Groen, "Direct fabrication of nanowires in an electron microscope," Appl. Phys. Lett. 82, 3514 (2003).
[CrossRef]

Smith, C. L. C.

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Steel, M. J.

Sterke, C. M.

Stoltz, N.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

Tamboli, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Tanaka, Y.

Tian, B.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622 (2008).
[CrossRef]

Tomljenovic-Hanic, S.

Viktorovitch, P.

Vlasov, Y. A.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Vuckovic, J.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Watanabe, H.

K. Nozaki, H. Watanabe, and T. Baba, "Photonic crystal nanolasers monolithically integrated with passive waveguide for efficient light extraction," Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

Wild, B.

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Witzens, J.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

Wu, D. K. C.

Wu, Y.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622 (2008).
[CrossRef]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yang, J.-K.

M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y-H. Lee, "Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots," Opt. Express 16, 9829 (2008).
[CrossRef] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Yang, S. M.

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Yu, M.-F.

M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 (2000).
[CrossRef] [PubMed]

Zabelin, V.

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Zuppiroli, L.

Appl. Phys. Lett. (7)

M. Lon?ar, A. Scherer, and Y. Qui, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004).
[CrossRef]

K. Nozaki, H. Watanabe, and T. Baba, "Photonic crystal nanolasers monolithically integrated with passive waveguide for efficient light extraction," Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. L. Hu, M. Atatüre, J. Dreiser, and A. Imamo?lu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

K. Hennessy, C. Högerle, E. L. Hu, A. Badolato, and A. Imamo?lu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, 043123 (2008).
[CrossRef]

N. Silvis-Cividjian, C. W. Hagen, P. Kruit, M. A. J. v.d. Stam, and H. B. Groen, "Direct fabrication of nanowires in an electron microscope," Appl. Phys. Lett. 82, 3514 (2003).
[CrossRef]

J. Appl. Phys. (1)

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, "Characteristics of a stick resonator in a two-dimensional photonic crystal slab," J. Appl. Phys. 95, 411 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

M. Kristian, N. M. Dorte, M. R. Anne, C. Anna, C. A. Charlotte, B. Michael, J. H. Claus, and B. Peter, "Solid Gold Nanostructures Fabricated by Electron Beam Deposition," Nano Lett. 3, 1499 (2003).
[CrossRef]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Nat. Photonics (1)

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622 (2008).
[CrossRef]

Nature (3)

Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamo?lu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Opt. Express (9)

S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008).
[CrossRef] [PubMed]

S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008).
[CrossRef] [PubMed]

S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, P. Viktorovitch, "Microlasers based on effective index confined slow light modes in photonic crystal waveguides," Opt. Express 16, 6331 (2008).
[CrossRef] [PubMed]

M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, "Reconfigurable microfiber-coupled photonic crystal resonator," Opt. Express 15, 17241 (2007).
[CrossRef] [PubMed]

C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, B. J. Eggleton, "Reconfigurable microfluidic photonic crystal slab cavities," Opt. Express 16, 15887 (2008).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, C. M. Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka and S. Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Express 15, 17248 (2007).
[CrossRef] [PubMed]

M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y-H. Lee, "Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots," Opt. Express 16, 9829 (2008).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
[CrossRef] [PubMed]

M. W. McCutcheon and M. Lon?ar, "Design of silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond crystal," Opt. Express 16, 19136 (2008).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeetster, "Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers," Phys. Rev. Lett. 96, 27404 (2006).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Science (3)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Crystal Defect Laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 (2000).
[CrossRef] [PubMed]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1998).

We used the following equation to estimate the absorption loss of the CNB: 2?/(?Qabs) = 2?/? (1/Qm-1/Qt) [33], where 2?/(?Qabs), ?, Qm and Qt are the absorption loss, resonant wavelength, measured and theoretical Q factor respectively. The effect of the fabrication imperfection is included in this estimated absorption loss.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SEM image of an EBID carbonaceous nano-dot. (b) Three CNBs of different deposition times of 30, 60, and 120 seconds, respectively, taken at an angle of 45 degrees. (c) CNB printed on PhC waveguide.

Fig. 2.
Fig. 2.

(a) Dispersion of PhC waveguide. PhC lattice constant = a. Air hole radius = 0.30 a. Insets show Hz-profiles of the even- and odd-symmetry guided modes. (b) Calculated electric field intensity profile of the EBID PhC cavity mode. The refractive index and the thickness of the CNB are 3.0 and 40 nm, respectively. Contours of the PhC waveguide and the CNB are superimposed. (c) Plot of the cutoff frequency of the photonic double-heterostructure. Calculated Q factor (d) and cutoff wavelength-shift (e) with various thicknesses and refractive indices of the CNB, when the CNB is created above the electric field maximum of the slab.

Fig. 3.
Fig. 3.

Near-field images (a) of an EBID PhC laser with a CNB located above the electric field maximum at the center of the PhC waveguide, (b) of an even-symmetry dispersion-edge mode laser without CNB. The dotted rectangle indicates the boundary of the fabricated PhC pattern shown in Fig. 1(c). (c) Calculated vertical component of the Poynting vector by FDTD methods. (d) Side view of electric field intensity profile (log scale).

Fig. 4.
Fig. 4.

(a) Polarization-resolved PL spectra of the PhC waveguide without CNB, with pump power of ~460 μW. The even-symmetry dispersion-edge laser mode is observed at a wavelength of 1549.6 nm. (b) EBID PhC laser lasing at 1552.0 nm. The spectrum is measured at an incident pumping level of ~270 μW. (c) Lasing spectra of showing both the EBID PhC laser and other even-symmetry guided modes. The pump area is increased to ~8 μm, in order to cover a wide area. The dotted line indicates the even-symmetry dispersion-edge (1549.6 nm) found in Fig. 4(a). (d) Light-in versus light-out curve and polarization characteristics of the EBID PhC laser of Fig. 4(b).

Fig. 5.
Fig. 5.

(a) An EBID PhC laser with a CNB located at the node of electric field intensity. (b) Calculated side view of electric field intensity profile (log scale). (c) Near-field images of the EBID PhC laser in Fig. 5(a). Calculated Q factor (d) and cutoff wavelength-shift with various thicknesses and refractive indices of the CNB, when the CNB is created at the node of electric field intensity.

Fig. 6.
Fig. 6.

(a) Polarization-resolved PL spectra of the PhC waveguide without CNB, with pump power of ~410 μW. The even-symmetry dispersion-edge laser mode is observed at a wavelength of 1518.4 nm. (b) EBID PhC laser with a CNB at the node of electric field intensity. The EBID PhC laser operates at 1520.6 nm. The spectrum is measured at an incident pumping level of ~270 μW.

Metrics