Abstract

We study the retrieval efficiency of stored light pulses based on electromagnetically induced transparency in multiple simultaneously driven Λ-systems. The light pulses are stored in coherences between different Zeeman states of laser-cooled atoms. When the stray magnetic field from the environment is minimized by compensation coils we observed a smaller retrieved probe pulse amplitude than for a small externally applied magnetic field, i.e., a seemingly shorter coherence time. We identify this effect as a beating of several coherences due to a very small uncompensated dc magnetic stray field. By intentionally applying a small magnetic field larger than this stray field we were able to increase the retrieved probe pulse amplitude up to five-fold to the value determined by the true coherence time of our system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
    [CrossRef]
  2. M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark-state polaritons," Phys. Rev. A 65, 022314 (2002).
    [CrossRef]
  3. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
    [CrossRef]
  4. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
    [CrossRef] [PubMed]
  5. C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
    [CrossRef] [PubMed]
  6. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
    [CrossRef]
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
    [CrossRef]
  8. M. Fleischhauer and M. D. Lukin, "Dark-State Polaritons in Electromagnetically Induced Transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
    [CrossRef] [PubMed]
  9. S. D. Jenkins, D. N. Matsukevich, T. Chaneliere, A. Kuzmich, and T. A. B. Kennedy, "Theory of dark-state polariton collapses and revivals," Phys. Rev. A 73, 021803 (2006).
    [CrossRef]
  10. D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Observation of Dark State Polariton Collapses and Revivals," Phys. Rev. Lett. 96, 033601 (2006).
    [CrossRef] [PubMed]
  11. L. Karpa, F. Vewinger, and M. Weitz, "Resonance Beating of Light Stored Using Atomic Spinor Polaritons," Phys. Rev. Lett. 101, 170406 (2008).
    [CrossRef] [PubMed]
  12. M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, "Ramsey-like measurement of the decoherence rate between Zeeman sublevels," Phys. Rev. A 78, 063818 (2008).
    [CrossRef]
  13. Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-C. Chen, and I. A. Yu, "Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density," Opt. Express 16, 3753-3761 (2008).
    [CrossRef] [PubMed]
  14. Y.-C. Chen, Y.-W. Chen, J.-J. Su, J.-Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations," Phys. Rev. A 63, 043808 (2001).
    [CrossRef]

2008 (4)

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

L. Karpa, F. Vewinger, and M. Weitz, "Resonance Beating of Light Stored Using Atomic Spinor Polaritons," Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef] [PubMed]

M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, "Ramsey-like measurement of the decoherence rate between Zeeman sublevels," Phys. Rev. A 78, 063818 (2008).
[CrossRef]

Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-C. Chen, and I. A. Yu, "Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density," Opt. Express 16, 3753-3761 (2008).
[CrossRef] [PubMed]

2006 (2)

S. D. Jenkins, D. N. Matsukevich, T. Chaneliere, A. Kuzmich, and T. A. B. Kennedy, "Theory of dark-state polariton collapses and revivals," Phys. Rev. A 73, 021803 (2006).
[CrossRef]

D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Observation of Dark State Polariton Collapses and Revivals," Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef] [PubMed]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

2004 (1)

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

2002 (1)

M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark-state polaritons," Phys. Rev. A 65, 022314 (2002).
[CrossRef]

2001 (2)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Y.-C. Chen, Y.-W. Chen, J.-J. Su, J.-Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations," Phys. Rev. A 63, 043808 (2001).
[CrossRef]

2000 (1)

M. Fleischhauer and M. D. Lukin, "Dark-State Polaritons in Electromagnetically Induced Transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

1999 (2)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Ben-kish, A.

M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, "Ramsey-like measurement of the decoherence rate between Zeeman sublevels," Phys. Rev. A 78, 063818 (2008).
[CrossRef]

Chaneliere, T.

D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Observation of Dark State Polariton Collapses and Revivals," Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef] [PubMed]

S. D. Jenkins, D. N. Matsukevich, T. Chaneliere, A. Kuzmich, and T. A. B. Kennedy, "Theory of dark-state polariton collapses and revivals," Phys. Rev. A 73, 021803 (2006).
[CrossRef]

Chen, S.

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

Chen, Y.-A.

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

Chen, Y.-C.

Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-C. Chen, and I. A. Yu, "Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density," Opt. Express 16, 3753-3761 (2008).
[CrossRef] [PubMed]

Y.-C. Chen, Y.-W. Chen, J.-J. Su, J.-Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations," Phys. Rev. A 63, 043808 (2001).
[CrossRef]

Chen, Y.-W.

Y.-C. Chen, Y.-W. Chen, J.-J. Su, J.-Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations," Phys. Rev. A 63, 043808 (2001).
[CrossRef]

Chou, H.-C.

Chuu, C.-S.

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

Cirac, J. I.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Davidson, N.

M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, "Ramsey-like measurement of the decoherence rate between Zeeman sublevels," Phys. Rev. A 78, 063818 (2008).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Dwivedi, P. P.

Firstenberg, O.

M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, "Ramsey-like measurement of the decoherence rate between Zeeman sublevels," Phys. Rev. A 78, 063818 (2008).
[CrossRef]

Fiurasek, J.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark-state polaritons," Phys. Rev. A 65, 022314 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, "Dark-State Polaritons in Electromagnetically Induced Transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Huang, J.-Y.

Y.-C. Chen, Y.-W. Chen, J.-J. Su, J.-Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations," Phys. Rev. A 63, 043808 (2001).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Jenkins, S. D.

S. D. Jenkins, D. N. Matsukevich, T. Chaneliere, A. Kuzmich, and T. A. B. Kennedy, "Theory of dark-state polariton collapses and revivals," Phys. Rev. A 73, 021803 (2006).
[CrossRef]

D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Observation of Dark State Polariton Collapses and Revivals," Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef] [PubMed]

Julsgaard, B.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Karpa, L.

L. Karpa, F. Vewinger, and M. Weitz, "Resonance Beating of Light Stored Using Atomic Spinor Polaritons," Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef] [PubMed]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Kennedy, T. A. B.

D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Observation of Dark State Polariton Collapses and Revivals," Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef] [PubMed]

S. D. Jenkins, D. N. Matsukevich, T. Chaneliere, A. Kuzmich, and T. A. B. Kennedy, "Theory of dark-state polariton collapses and revivals," Phys. Rev. A 73, 021803 (2006).
[CrossRef]

Koch, M.

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

Kuzmich, A.

S. D. Jenkins, D. N. Matsukevich, T. Chaneliere, A. Kuzmich, and T. A. B. Kennedy, "Theory of dark-state polariton collapses and revivals," Phys. Rev. A 73, 021803 (2006).
[CrossRef]

D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Observation of Dark State Polariton Collapses and Revivals," Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef] [PubMed]

Lan, S.-Y.

D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Observation of Dark State Polariton Collapses and Revivals," Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef] [PubMed]

Lin, Y.-W.

Lukin, M. D.

M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark-state polaritons," Phys. Rev. A 65, 022314 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, "Dark-State Polaritons in Electromagnetically Induced Transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Matsukevich, D. N.

S. D. Jenkins, D. N. Matsukevich, T. Chaneliere, A. Kuzmich, and T. A. B. Kennedy, "Theory of dark-state polariton collapses and revivals," Phys. Rev. A 73, 021803 (2006).
[CrossRef]

D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Observation of Dark State Polariton Collapses and Revivals," Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef] [PubMed]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Pan, J.-W.

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

Polzik, E. S.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Ron, A.

M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, "Ramsey-like measurement of the decoherence rate between Zeeman sublevels," Phys. Rev. A 78, 063818 (2008).
[CrossRef]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Sagi, Y.

M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, "Ramsey-like measurement of the decoherence rate between Zeeman sublevels," Phys. Rev. A 78, 063818 (2008).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Schmiedmayer, J.

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Sherson, J.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Shuker, M.

M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, "Ramsey-like measurement of the decoherence rate between Zeeman sublevels," Phys. Rev. A 78, 063818 (2008).
[CrossRef]

Strassel, T.

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

Su, J.-J.

Y.-C. Chen, Y.-W. Chen, J.-J. Su, J.-Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations," Phys. Rev. A 63, 043808 (2001).
[CrossRef]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Vewinger, F.

L. Karpa, F. Vewinger, and M. Weitz, "Resonance Beating of Light Stored Using Atomic Spinor Polaritons," Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef] [PubMed]

Weitz, M.

L. Karpa, F. Vewinger, and M. Weitz, "Resonance Beating of Light Stored Using Atomic Spinor Polaritons," Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef] [PubMed]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Yu, I. A.

Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-C. Chen, and I. A. Yu, "Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density," Opt. Express 16, 3753-3761 (2008).
[CrossRef] [PubMed]

Y.-C. Chen, Y.-W. Chen, J.-J. Su, J.-Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations," Phys. Rev. A 63, 043808 (2001).
[CrossRef]

Yuan, Z.-S.

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

Zhao, B.

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Nature (2)

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (4)

M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, "Ramsey-like measurement of the decoherence rate between Zeeman sublevels," Phys. Rev. A 78, 063818 (2008).
[CrossRef]

Y.-C. Chen, Y.-W. Chen, J.-J. Su, J.-Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations," Phys. Rev. A 63, 043808 (2001).
[CrossRef]

S. D. Jenkins, D. N. Matsukevich, T. Chaneliere, A. Kuzmich, and T. A. B. Kennedy, "Theory of dark-state polariton collapses and revivals," Phys. Rev. A 73, 021803 (2006).
[CrossRef]

M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark-state polaritons," Phys. Rev. A 65, 022314 (2002).
[CrossRef]

Phys. Rev. Lett. (6)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, "Quantum Memory with Optically Trapped Atoms," Phys. Rev. Lett. 101, 120501 (2008).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Observation of Dark State Polariton Collapses and Revivals," Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef] [PubMed]

L. Karpa, F. Vewinger, and M. Weitz, "Resonance Beating of Light Stored Using Atomic Spinor Polaritons," Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, "Dark-State Polaritons in Electromagnetically Induced Transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) EIT coupling scheme for the case of 87Rb. The two ground states are coupled in a two-photon process by the strong coupling field Ω c and the weak probe field Ω p . (b) Coupling scheme in the presence of a magnetic field BL . (c) Relative energy shift of the three independent Λ-systems in (b). The energy of the each lowest ground state is set to zero and each upper ground state is shifted appropriately.

Fig. 2.
Fig. 2.

Illustration of the different coordinate systems when B ≠ 0. The quantization axis L is defined by the laser beam propagation direction and B by the magnetic field direction B.

Fig. 3.
Fig. 3.

Retrieved probe amplitude (solid lines) versus storage time in units of the oscillation period T for a fixed magnetic field strength parallel (a) and perpendicular (b) to the quantization axis L defined by the laser polarizations. The coherence time is τ = T. The dashed lines correspond to the case of B = 0. The calculation is based on Eq. (3). The parameters are q 1 = q 3 = 0 and q 2 = 0.18 in (a) and q 1 = 0.37, q 2 = 0.09, and q 3 = 0.51 in (b) as determined empirically by fitting experimental data with Eq. (3) for L B and L B , respectively.

Fig. 4.
Fig. 4.

(a) Retrieved probe amplitude versus storage time. B eff = 0 (black dotted line, q 1 = q 2 = q 3 = 0); B eff = B = 4.0 mG (q 1 = q 3 = 0, q 2 = 0.47) or B eff = B = 2.3 mG (q 1 = 0.37, q 2 = 0.09, q 3 = 0.51) (blue dashed line); B eff = 27 mG ≃ B (red solid line, q 1 = q 3 = 0, q 2 = 0.18). The coherence time is τ = 50 μs. The magnetic field strengths have been chosen according to the experimental data presented in Sec. 4. (b) Ratio of the amplitudes shown in (a). (c) Maximum possible enhancement of the retrieved amplitude versus storage time. Each data point corresponds to the maximum achievable amplitude. The enhancement is shown for magnetic fields B = 1 mG (black), 2 mG (blue), and 3 mG (red) (from bottom to top).

Fig. 5.
Fig. 5.

Typical measured signals of the input probe pulse (magenta diamonds), the delayed probe pulse for constant coupling field (black squares) and a retrieved probe pulse after a storage period of 51 μs (red circles) for the coupling field timing indicated by the red solid line. The input probe pulse has been scaled down by a factor of 0.2.

Fig. 6.
Fig. 6.

(a) & (b) Retrieved probe pulse amplitude versus storage time for a magnetic field strength of (a) B eff = 28 mG≃B and (b)B eff = 36 mG≃B . The red lines correspond to the best fits by Eq. (3). (c) Oscillation frequency of the retrieved probe pulse amplitude versus applied current through the coils Icoil (bottom axis) and magnetic field strength B eff (top axis). Negative values of the magnetic field strength correspond to an opposite direction of the magnetic field. The red lines represent the best linear fits. The oscillation frequency has a minimum for a current of |Icoil | = 26 mA, which corresponds to a magnetic field strength of Bstray ≈ 123 mG, which is the DC value of the stray magnetic field in this direction. The error bars in (a) & (b) correspond to an uncertainty of 3 % when determining the amplitude and in (c) to the standard deviation of the best fit of data as those in (a) & (b).

Fig. 7.
Fig. 7.

(a) Retrieved probe pulse amplitude versus storage time for the minimum achievable magnetic field strength of B′ ≃ 3 mG (black squares) in our system and for an applied magnetic field of B eff = B + B′ = 27 mG (red dots). The solid lines represent the best fit of the experimental data with Eq. (3). The blue dashed line corresponds to a fit of the data in black by a simple exponential decay. The error bars represent a maximum a error obtained in the fitting process of 3 %. (b) Retrieved amplitude enhancement of the data shown in (a). The data shown in red was divided by the data in black for each storage time to obtain the enhancement for both the experimental (dots) and the fitted curves (line).

Fig. 8.
Fig. 8.

Normalized slow light probe pulse amplitude versus magnetic field strength B . The amplitudes were measured without storage of the probe pulses. The error bars present the amplitude fluctuation for several measurements. The red solid line corresponds to the theoretical prediction calculated by solving the Maxwell-Bloch equations under the assumption that the population is equally distributed among the three Zeeman states.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( t ) = A ( 0 ) exp ( t τ ) ,
A ( t ) = A ( 0 ) ( 1 n = 1 3 p n ) exp ( i ω sw 0 t ) + n = 1 3 p n exp ( i ( ω sw 0 + n ω Z ) t ) 2 exp ( t / τ ) .
A ( t ) = A ( 0 ) [ ( 1 n = 1 3 q n ) + n = 1 3 q n cos ( n × 2 πt / T ) ] 2 exp ( t / τ ) ,

Metrics