Abstract

A new interferometer-based optical sensing platform with nanostructured thin films of ZrO2 or TiO2 as sensing environment has been developed. With the application of an IC compatible Si3N4 waveguide technology, Mach-Zehnder interferometer devices have been fabricated. The application of the glancing angle deposition technique allowed fabrication of nanostructured thin films as the optical sensing environment. Sensing ability of fabricated devices has been demonstrated through the refractive index measurement of a known gas. The transmission spectra and time response measurements have demonstrated a maximum phase shift of Δφ=π/10 and a ∣ΔP out∣=0.65 dBm. Devices with TiO2 film on the sensing region performed much better than devices with ZrO2, with sensitivity twice as high.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17, R93–R116 (2006).
    [CrossRef]
  2. L. M. Lechuga, F. Prieto, and B. Sepulveda, in Optical Sensors for Industrial and Environmental Applications, (Springer, 2003).
  3. J. van Lith, P. V. Lambeck, J. W. Hoekstra, R. G. Heideman, and R. R. Wijn, “The segmented waveguide sensor: principle and experiments,” J. Lightwave Technol. 23, 355–363 (2005).
    [CrossRef]
  4. S. Létant and M. J. Sailor, “Detection of HF gas with a porous Si interferometer,” Adv. Mater. 12, 355–359 (2000).
    [CrossRef]
  5. K. Robbie, L .J. Friedrich, and S. K. Dew, “Fabrication of thin films with high porous nanostructure,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
    [CrossRef]
  6. J. Steele, A. van Popta, M. Hawkeyea, J. Sit, and M. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. and Actuators B 120, 213–219 (2006).
    [CrossRef]
  7. K. Harris, A. Huzinga, and M. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
    [CrossRef]
  8. S. Hsu and Y. Huang, “A novel Mach-Zehnder interferometer based on dual arrow structures for sensing applications,” J. Lightwave Technol. 23, 4200–4206 (2005).
    [CrossRef]
  9. R. N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. and Actuators B,  7, 672–676 (1992).
    [CrossRef]
  10. R. Ramaswami and K. N. Sivarajan, in Optical Networks: A Practical Perspective, Second ed., (Morgan Kaufmann, 2002).
  11. G. J. Valdhuis, O. Parriaux, H. J. Hoekstra, and P. V. Lambeck, “Sensitivity enhancement in evanescent optical waveguide sensors,” J. Lightwave Technol. 18, 677–682 (2000).
    [CrossRef]
  12. Optiwave, “Waveguide Optics Modeling Software Systems,” in OptiBPM Technical Background, Ottawa, ON, Canada, (2005).
  13. A. Dakka, J. Lafait, C. Sella, S. Berthier, J. C. Martin, and M. Maaza, “Optical properties of Ag-TiO2 nanocermet films prepared by cosputtering and multilayer deposition techniques,” Appl. Opt. 39, 2745–2753 (2000).
    [CrossRef]
  14. M. W. McCall and A. Lakhatakia, “Integrated optical polarization filtration via sculptured-thin-film technology,” J. Mod. Opt. 48, 2179–2184 (2001).
  15. B. Dick and M. J. Brett, “Nanofabrication by glancing angle deposition,” Encyclopedia of Nanoscience and Nanotechnology,  6, 703–725 (2004).
  16. D. Celo, R. Vandusen, T. Smy, J. Albert, N. G. Tarr, and P. D. Waldron, “Low temperature plasma etching for Si3N4 waveguide applications,” J. Vac. Sci. Technol. A 26, 253–258 (2008).
    [CrossRef]
  17. A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007).
    [CrossRef]
  18. G. Gulen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater. 18, 373–381 (2002).
    [CrossRef]
  19. E. Drouard, P. Huguet-Chantome, L. Escoubas, and F. Flory, “Δn/ΔT measurements performed with guided waves and their application to the temperature sensitivity of wavelength-division multiplexing filters,” Appl. Opt. 41, 3132–3136 (2002).
    [CrossRef] [PubMed]
  20. E. Hecht, Optics, (Addison Wesley Longman, Inc., Third ed., 1998).

2008 (1)

D. Celo, R. Vandusen, T. Smy, J. Albert, N. G. Tarr, and P. D. Waldron, “Low temperature plasma etching for Si3N4 waveguide applications,” J. Vac. Sci. Technol. A 26, 253–258 (2008).
[CrossRef]

2007 (1)

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007).
[CrossRef]

2006 (2)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17, R93–R116 (2006).
[CrossRef]

J. Steele, A. van Popta, M. Hawkeyea, J. Sit, and M. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. and Actuators B 120, 213–219 (2006).
[CrossRef]

2005 (2)

2004 (1)

B. Dick and M. J. Brett, “Nanofabrication by glancing angle deposition,” Encyclopedia of Nanoscience and Nanotechnology,  6, 703–725 (2004).

2002 (3)

G. Gulen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater. 18, 373–381 (2002).
[CrossRef]

E. Drouard, P. Huguet-Chantome, L. Escoubas, and F. Flory, “Δn/ΔT measurements performed with guided waves and their application to the temperature sensitivity of wavelength-division multiplexing filters,” Appl. Opt. 41, 3132–3136 (2002).
[CrossRef] [PubMed]

K. Harris, A. Huzinga, and M. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
[CrossRef]

2001 (1)

M. W. McCall and A. Lakhatakia, “Integrated optical polarization filtration via sculptured-thin-film technology,” J. Mod. Opt. 48, 2179–2184 (2001).

2000 (3)

1995 (1)

K. Robbie, L .J. Friedrich, and S. K. Dew, “Fabrication of thin films with high porous nanostructure,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

1992 (1)

R. N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. and Actuators B,  7, 672–676 (1992).
[CrossRef]

Albert, J.

D. Celo, R. Vandusen, T. Smy, J. Albert, N. G. Tarr, and P. D. Waldron, “Low temperature plasma etching for Si3N4 waveguide applications,” J. Vac. Sci. Technol. A 26, 253–258 (2008).
[CrossRef]

Berthier, S.

Brett, M.

J. Steele, A. van Popta, M. Hawkeyea, J. Sit, and M. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. and Actuators B 120, 213–219 (2006).
[CrossRef]

K. Harris, A. Huzinga, and M. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
[CrossRef]

Brett, M. J.

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007).
[CrossRef]

B. Dick and M. J. Brett, “Nanofabrication by glancing angle deposition,” Encyclopedia of Nanoscience and Nanotechnology,  6, 703–725 (2004).

Celo, D.

D. Celo, R. Vandusen, T. Smy, J. Albert, N. G. Tarr, and P. D. Waldron, “Low temperature plasma etching for Si3N4 waveguide applications,” J. Vac. Sci. Technol. A 26, 253–258 (2008).
[CrossRef]

Cheng, J.

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007).
[CrossRef]

Dakka, A.

Dew, S. K.

K. Robbie, L .J. Friedrich, and S. K. Dew, “Fabrication of thin films with high porous nanostructure,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Dick, B.

B. Dick and M. J. Brett, “Nanofabrication by glancing angle deposition,” Encyclopedia of Nanoscience and Nanotechnology,  6, 703–725 (2004).

Drouard, E.

Escoubas, L.

Fabricius, R. N.

R. N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. and Actuators B,  7, 672–676 (1992).
[CrossRef]

Flory, F.

Friedrich, L .J.

K. Robbie, L .J. Friedrich, and S. K. Dew, “Fabrication of thin films with high porous nanostructure,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Gauglitz, G.

R. N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. and Actuators B,  7, 672–676 (1992).
[CrossRef]

Gulen, G.

G. Gulen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater. 18, 373–381 (2002).
[CrossRef]

Harris, K.

K. Harris, A. Huzinga, and M. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
[CrossRef]

Hawkeyea, M.

J. Steele, A. van Popta, M. Hawkeyea, J. Sit, and M. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. and Actuators B 120, 213–219 (2006).
[CrossRef]

Hecht, E.

E. Hecht, Optics, (Addison Wesley Longman, Inc., Third ed., 1998).

Heideman, R. G.

Hoekstra, H. J.

Hoekstra, J. W.

Hsu, S.

Huang, Y.

Huguet-Chantome, P.

Huzinga, A.

K. Harris, A. Huzinga, and M. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
[CrossRef]

Inci, M. N.

G. Gulen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater. 18, 373–381 (2002).
[CrossRef]

Ingenhoff, J.

R. N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. and Actuators B,  7, 672–676 (1992).
[CrossRef]

Lafait, J.

Lakhatakia, A.

M. W. McCall and A. Lakhatakia, “Integrated optical polarization filtration via sculptured-thin-film technology,” J. Mod. Opt. 48, 2179–2184 (2001).

Lambeck, P. V.

Lechuga, L. M.

L. M. Lechuga, F. Prieto, and B. Sepulveda, in Optical Sensors for Industrial and Environmental Applications, (Springer, 2003).

Létant, S.

S. Létant and M. J. Sailor, “Detection of HF gas with a porous Si interferometer,” Adv. Mater. 12, 355–359 (2000).
[CrossRef]

Lith, J. van

Maaza, M.

Martin, J. C.

McCall, M. W.

M. W. McCall and A. Lakhatakia, “Integrated optical polarization filtration via sculptured-thin-film technology,” J. Mod. Opt. 48, 2179–2184 (2001).

Optiwave,

Optiwave, “Waveguide Optics Modeling Software Systems,” in OptiBPM Technical Background, Ottawa, ON, Canada, (2005).

Parriaux, O.

Popta, A. C. van

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007).
[CrossRef]

Popta, A. van

J. Steele, A. van Popta, M. Hawkeyea, J. Sit, and M. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. and Actuators B 120, 213–219 (2006).
[CrossRef]

Prieto, F.

L. M. Lechuga, F. Prieto, and B. Sepulveda, in Optical Sensors for Industrial and Environmental Applications, (Springer, 2003).

Ramaswami, R.

R. Ramaswami and K. N. Sivarajan, in Optical Networks: A Practical Perspective, Second ed., (Morgan Kaufmann, 2002).

Robbie, K.

K. Robbie, L .J. Friedrich, and S. K. Dew, “Fabrication of thin films with high porous nanostructure,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Sailor, M. J.

S. Létant and M. J. Sailor, “Detection of HF gas with a porous Si interferometer,” Adv. Mater. 12, 355–359 (2000).
[CrossRef]

Sella, C.

Sepulveda, B.

L. M. Lechuga, F. Prieto, and B. Sepulveda, in Optical Sensors for Industrial and Environmental Applications, (Springer, 2003).

Sit, J.

J. Steele, A. van Popta, M. Hawkeyea, J. Sit, and M. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. and Actuators B 120, 213–219 (2006).
[CrossRef]

Sit, J. C.

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007).
[CrossRef]

Sivarajan, K. N.

R. Ramaswami and K. N. Sivarajan, in Optical Networks: A Practical Perspective, Second ed., (Morgan Kaufmann, 2002).

Smy, T.

D. Celo, R. Vandusen, T. Smy, J. Albert, N. G. Tarr, and P. D. Waldron, “Low temperature plasma etching for Si3N4 waveguide applications,” J. Vac. Sci. Technol. A 26, 253–258 (2008).
[CrossRef]

Steele, J.

J. Steele, A. van Popta, M. Hawkeyea, J. Sit, and M. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. and Actuators B 120, 213–219 (2006).
[CrossRef]

Tarr, N. G.

D. Celo, R. Vandusen, T. Smy, J. Albert, N. G. Tarr, and P. D. Waldron, “Low temperature plasma etching for Si3N4 waveguide applications,” J. Vac. Sci. Technol. A 26, 253–258 (2008).
[CrossRef]

Valdhuis, G. J.

Vandusen, R.

D. Celo, R. Vandusen, T. Smy, J. Albert, N. G. Tarr, and P. D. Waldron, “Low temperature plasma etching for Si3N4 waveguide applications,” J. Vac. Sci. Technol. A 26, 253–258 (2008).
[CrossRef]

Waldron, P. D.

D. Celo, R. Vandusen, T. Smy, J. Albert, N. G. Tarr, and P. D. Waldron, “Low temperature plasma etching for Si3N4 waveguide applications,” J. Vac. Sci. Technol. A 26, 253–258 (2008).
[CrossRef]

Wijn, R. R.

Adv. Mater. (1)

S. Létant and M. J. Sailor, “Detection of HF gas with a porous Si interferometer,” Adv. Mater. 12, 355–359 (2000).
[CrossRef]

Appl. Opt. (2)

Electrochem. Solid-State Lett. (1)

K. Harris, A. Huzinga, and M. Brett, “High-speed porous thin film humidity sensors,” Electrochem. Solid-State Lett. 5, H27–H29 (2002).
[CrossRef]

Encyclopedia of Nanoscience and Nanotechnology (1)

B. Dick and M. J. Brett, “Nanofabrication by glancing angle deposition,” Encyclopedia of Nanoscience and Nanotechnology,  6, 703–725 (2004).

J. Appl. Phys. (1)

A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102, 013517 (2007).
[CrossRef]

J. Lightwave Technol. (3)

J. Mod. Opt. (1)

M. W. McCall and A. Lakhatakia, “Integrated optical polarization filtration via sculptured-thin-film technology,” J. Mod. Opt. 48, 2179–2184 (2001).

J. Vac. Sci. Technol. A (2)

D. Celo, R. Vandusen, T. Smy, J. Albert, N. G. Tarr, and P. D. Waldron, “Low temperature plasma etching for Si3N4 waveguide applications,” J. Vac. Sci. Technol. A 26, 253–258 (2008).
[CrossRef]

K. Robbie, L .J. Friedrich, and S. K. Dew, “Fabrication of thin films with high porous nanostructure,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17, R93–R116 (2006).
[CrossRef]

Opt. Mater. (1)

G. Gulen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater. 18, 373–381 (2002).
[CrossRef]

Sens. and Actuators B (2)

J. Steele, A. van Popta, M. Hawkeyea, J. Sit, and M. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. and Actuators B 120, 213–219 (2006).
[CrossRef]

R. N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. and Actuators B,  7, 672–676 (1992).
[CrossRef]

Other (4)

R. Ramaswami and K. N. Sivarajan, in Optical Networks: A Practical Perspective, Second ed., (Morgan Kaufmann, 2002).

L. M. Lechuga, F. Prieto, and B. Sepulveda, in Optical Sensors for Industrial and Environmental Applications, (Springer, 2003).

Optiwave, “Waveguide Optics Modeling Software Systems,” in OptiBPM Technical Background, Ottawa, ON, Canada, (2005).

E. Hecht, Optics, (Addison Wesley Longman, Inc., Third ed., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic representation of interferometric sensing (a) a MZI with sensing region in the lower arm, and (b) a magnified sectional view of sensing region depicting waveguide layers and NTF deposited on the opening.

Fig. 2.
Fig. 2.

Waveguide effective refractive index as function of cladding refractive index and simulated modal sensitivity.

Fig. 3.
Fig. 3.

The waveguide rib structure (a) a cross-sectional schematic representation, and (b) SEM image of a fabricated waveguide, showing the Si3N4 rib before deposition of SiO2 cladding.

Fig. 4.
Fig. 4.

Sensing windows and TiO2 thin film structure (a) microscope image of a processed wafer depicting sensing windows where, SiO2 layer has been etched, and (b) SEM image of a typical film deposited onto stationary processed wafer.

Fig. 5.
Fig. 5.

Optical measurement setup at NRC optical testing laboratory.

Fig. 6.
Fig. 6.

Experimental setup for N2 and CO2 refractive index measurement (a) schematic representation of the system, and (b) photographed image of a waveguide substrate with an acrylic gas cell attached to the surface.

Fig. 7.
Fig. 7.

Output power of MZI with N2 and CO2 in sensing environment for (a) device with ZrO2, and (b) device with TiO2 film deposited on the sensing arm.

Fig. 8.
Fig. 8.

Sensitivity comparison for devices with ZrO2 and TiO2 film on the sensing layer.

Fig. 9.
Fig. 9.

Time response for alternating N2 and CO2 in the gas cell, device with (a) ZrO2, and (b) TiO2 film.

Tables (3)

Tables Icon

Table 1. Starting wafer parameters

Tables Icon

Table 2. Fitting parameters for graphs of Fig. 7.

Tables Icon

Table 3. The slope of the sensitivity curve for devices with ZrO2 and TiO2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ φ = 2 π λ 0 L int Δ N eff
S m = Δ N eff Δ n SL

Metrics