Abstract

We study the origin of bright leaky-cavity mode emission and its influence on photon statistics in weakly coupled quantum dot - semiconductor cavity systems, which consist of a planar photonic-crystal and several quantum dots. We present experimental measurements that show that when the system is excited above the barrier energy, then bright cavity mode emissions with nonzero detuning are dominated by radiative recombinations of deep-level defects in the barrier layers. Under this excitation condition, the second-order photon autocorrelation measurements reveal that the cavity mode emission at nonzero detuning exhibits classical photon-statistics, while the bare exciton emission shows a clear partial anti-bunching. As we enter a Purcell factor enhancement regime, signaling a clear cavity-exciton coupling, the relative weight of the background recombination contribution to the cavity emission decreases. Consequently, the anti-bunching behavior is more significant than the bare exciton case – indicating that the photon statistics becomes more non-classical. These measurements are qualitatively explained using a medium-dependent master equation model that accounts for several excitons and a leaky cavity mode.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef]
  2. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, E.Waks, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. B 69, 205324 (2004).
    [CrossRef]
  3. S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704 (2007).
    [CrossRef]
  4. D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008).
    [CrossRef]
  5. A. Kiraz, M. Atature and A. Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing," Phys. Rev. A 69, 032305 (2004).
    [CrossRef]
  6. J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
    [CrossRef]
  7. T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008).
    [CrossRef]
  8. D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
    [CrossRef]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
    [CrossRef]
  10. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
    [CrossRef]
  11. M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, "Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities," Phys. Rev. B 77, 161303 (2008).
    [CrossRef]
  12. S. Hughes and P. Yao, "Theory of quantum light emission from a strongly-coupled single quantum dot photoniccrystal cavity system," Opt. Express 17, 3322 (2009).
  13. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999).
    [CrossRef]
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  15. N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
    [CrossRef]
  16. T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, "Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities," Opt. Express 16, 5199 (2008).
    [CrossRef]
  17. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
    [CrossRef]
  18. T. Takagahara, "Theory of exciton dephasing in semiconductor quantum dots," Phys. Rev. B 60, 2638 (1999).
    [CrossRef]
  19. B. Krummheuer, V. M. Axt and T. Kuhn "Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots," Phys. Rev. B 65, 195313 (2002).
    [CrossRef]
  20. P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef]
  21. T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe and T. Sogawa, "Cavity-QED assisted "attraction" between an exciton and a cavity mode in a planar photonic crystal cavity," Submitted.
  22. H. Kukimoto, C. H. Henry and F. R. Merritt, "Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration," Phys. Rev. B 7, 2486 (1973).
    [CrossRef]
  23. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
    [CrossRef]
  24. E. Illes, P. Yao, and S. Hughes, "Unusual quantum correlations and photon antibunching in an off-reson quantum dot photonic-crystal cavity system," Accepted for CLEO/IQEC (Paper: ITuJ3), Baltimore, 2009.

2009 (1)

2008 (4)

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, "Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities," Opt. Express 16, 5199 (2008).
[CrossRef]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, "Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities," Phys. Rev. B 77, 161303 (2008).
[CrossRef]

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008).
[CrossRef]

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008).
[CrossRef]

2007 (3)

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704 (2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

2006 (1)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

2005 (2)

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

2004 (4)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

A. Kiraz, M. Atature and A. Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing," Phys. Rev. A 69, 032305 (2004).
[CrossRef]

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, E.Waks, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. B 69, 205324 (2004).
[CrossRef]

2002 (2)

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

B. Krummheuer, V. M. Axt and T. Kuhn "Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots," Phys. Rev. B 65, 195313 (2002).
[CrossRef]

2001 (1)

P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

1999 (2)

T. Takagahara, "Theory of exciton dephasing in semiconductor quantum dots," Phys. Rev. B 60, 2638 (1999).
[CrossRef]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999).
[CrossRef]

1973 (1)

H. Kukimoto, C. H. Henry and F. R. Merritt, "Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration," Phys. Rev. B 7, 2486 (1973).
[CrossRef]

1946 (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
[CrossRef]

Atature, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

A. Kiraz, M. Atature and A. Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing," Phys. Rev. A 69, 032305 (2004).
[CrossRef]

Awschalom, D. D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999).
[CrossRef]

Axt, V. M.

B. Krummheuer, V. M. Axt and T. Kuhn "Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots," Phys. Rev. B 65, 195313 (2002).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

Bennett, A. J.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008).
[CrossRef]

Bimberg, D.

P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Borri, P.

P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704 (2007).
[CrossRef]

Burkard, G.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999).
[CrossRef]

Cade, N. I.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, "Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities," Opt. Express 16, 5199 (2008).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

Coldren, L. A.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704 (2007).
[CrossRef]

Deppe, D. G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

Dewhurst, S. J.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008).
[CrossRef]

Ding, D.

DiVincenzo, D. P.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

Ellis, D. P. J.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008).
[CrossRef]

Falt, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

Fattal, D.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, E.Waks, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. B 69, 205324 (2004).
[CrossRef]

Forchel, A.

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
[CrossRef]

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

G¨otzinger, S.

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

Gibbs, H. M.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

Gotoh, H.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, "Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities," Opt. Express 16, 5199 (2008).
[CrossRef]

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

Hendrickson, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

Henry, C. H.

H. Kukimoto, C. H. Henry and F. R. Merritt, "Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration," Phys. Rev. B 7, 2486 (1973).
[CrossRef]

Hofmann, C.

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
[CrossRef]

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

Hughes, S.

S. Hughes and P. Yao, "Theory of quantum light emission from a strongly-coupled single quantum dot photoniccrystal cavity system," Opt. Express 17, 3322 (2009).

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe and T. Sogawa, "Cavity-QED assisted "attraction" between an exciton and a cavity mode in a planar photonic crystal cavity," Submitted.

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

A. Kiraz, M. Atature and A. Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing," Phys. Rev. A 69, 032305 (2004).
[CrossRef]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999).
[CrossRef]

Johnson, S. R.

Kamada, H.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, "Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities," Opt. Express 16, 5199 (2008).
[CrossRef]

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe and T. Sogawa, "Cavity-QED assisted "attraction" between an exciton and a cavity mode in a planar photonic crystal cavity," Submitted.

Kamp, M.

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
[CrossRef]

Kaniber, M.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, "Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities," Phys. Rev. B 77, 161303 (2008).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

Khitrova, G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

Kiraz, A.

A. Kiraz, M. Atature and A. Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing," Phys. Rev. A 69, 032305 (2004).
[CrossRef]

Krummheuer, B.

B. Krummheuer, V. M. Axt and T. Kuhn "Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots," Phys. Rev. B 65, 195313 (2002).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

Kuhn, T.

B. Krummheuer, V. M. Axt and T. Kuhn "Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots," Phys. Rev. B 65, 195313 (2002).
[CrossRef]

Kukimoto, H.

H. Kukimoto, C. H. Henry and F. R. Merritt, "Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration," Phys. Rev. B 7, 2486 (1973).
[CrossRef]

Kulakovskii, V. D.

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

Kuramochi, E.

Langbein, W.

P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Laucht, A.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, "Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities," Phys. Rev. B 77, 161303 (2008).
[CrossRef]

Loffler, A.

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
[CrossRef]

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

Loss, D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999).
[CrossRef]

Merritt, F. R.

H. Kukimoto, C. H. Henry and F. R. Merritt, "Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration," Phys. Rev. B 7, 2486 (1973).
[CrossRef]

Mikami, O.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Mosor, S.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

Nakano, H.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

Neumann, A.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, "Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities," Phys. Rev. B 77, 161303 (2008).
[CrossRef]

Nicoll, C. A.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008).
[CrossRef]

Notomi, M.

Okamoto, H.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe and T. Sogawa, "Cavity-QED assisted "attraction" between an exciton and a cavity mode in a planar photonic crystal cavity," Submitted.

Ouyang, D.

P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Pelton, M.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704 (2007).
[CrossRef]

Press, D.

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
[CrossRef]

Purcell, E. M.

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
[CrossRef]

Rakher, M.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704 (2007).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

Reithmaier, J. P.

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

Reitzenstein, S.

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
[CrossRef]

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

Richards, B. C.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

Ritchie, D. A.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

Santori, C.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, E.Waks, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. B 69, 205324 (2004).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Scherer, A.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

Schneider, S.

P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Se¸k, G.

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

Sellin, R. L.

P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Shchekin, O. B.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

Sherwin, M.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999).
[CrossRef]

Shields, A. J.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008).
[CrossRef]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Small, A.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999).
[CrossRef]

Sogawa, T.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, "Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities," Opt. Express 16, 5199 (2008).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe and T. Sogawa, "Cavity-QED assisted "attraction" between an exciton and a cavity mode in a planar photonic crystal cavity," Submitted.

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704 (2007).
[CrossRef]

Strauf, S.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704 (2007).
[CrossRef]

Sweet, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

Takagahara, T.

T. Takagahara, "Theory of exciton dephasing in semiconductor quantum dots," Phys. Rev. B 60, 2638 (1999).
[CrossRef]

Tanabe, T.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, "Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities," Opt. Express 16, 5199 (2008).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe and T. Sogawa, "Cavity-QED assisted "attraction" between an exciton and a cavity mode in a planar photonic crystal cavity," Submitted.

Tawara, T.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, "Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities," Opt. Express 16, 5199 (2008).
[CrossRef]

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe and T. Sogawa, "Cavity-QED assisted "attraction" between an exciton and a cavity mode in a planar photonic crystal cavity," Submitted.

Villas-B, J. M.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, "Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities," Phys. Rev. B 77, 161303 (2008).
[CrossRef]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

Woggon, U.

P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008).
[CrossRef]

Yamamoto, Y.

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
[CrossRef]

Yao, P.

S. Hughes and P. Yao, "Theory of quantum light emission from a strongly-coupled single quantum dot photoniccrystal cavity system," Opt. Express 17, 3322 (2009).

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe and T. Sogawa, "Cavity-QED assisted "attraction" between an exciton and a cavity mode in a planar photonic crystal cavity," Submitted.

Yoshie, T.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

Zhang, Y. -H.

Appl. Phys. Lett. (4)

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Appl. Phys. Lett. 92, 081906 (2008).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[CrossRef]

Nat. Photonics (1)

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704 (2007).
[CrossRef]

Nature (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot cavity system," Nature 445, 896 (2007).
[CrossRef]

J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004).
[CrossRef]

New J. Phys. (1)

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008).
[CrossRef]

Opt. Express (2)

Phys. Rev. (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. A (1)

A. Kiraz, M. Atature and A. Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing," Phys. Rev. A 69, 032305 (2004).
[CrossRef]

Phys. Rev. B (5)

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, E.Waks, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. B 69, 205324 (2004).
[CrossRef]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, "Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities," Phys. Rev. B 77, 161303 (2008).
[CrossRef]

T. Takagahara, "Theory of exciton dephasing in semiconductor quantum dots," Phys. Rev. B 60, 2638 (1999).
[CrossRef]

B. Krummheuer, V. M. Axt and T. Kuhn "Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots," Phys. Rev. B 65, 195313 (2002).
[CrossRef]

H. Kukimoto, C. H. Henry and F. R. Merritt, "Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration," Phys. Rev. B 7, 2486 (1973).
[CrossRef]

Phys. Rev. Lett. (4)

P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999).
[CrossRef]

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Other (2)

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe and T. Sogawa, "Cavity-QED assisted "attraction" between an exciton and a cavity mode in a planar photonic crystal cavity," Submitted.

E. Illes, P. Yao, and S. Hughes, "Unusual quantum correlations and photon antibunching in an off-reson quantum dot photonic-crystal cavity system," Accepted for CLEO/IQEC (Paper: ITuJ3), Baltimore, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics