Abstract

We study the origin of bright leaky-cavity mode emission and its influence on photon statistics in weakly coupled quantum dot -semiconductor cavity systems, which consist of a planar photonic-crystal and several quantum dots. We present experimental measurements that show that when the system is excited above the barrier energy, then bright cavity mode emissions with nonzero detuning are dominated by radiative recombinations of deep-level defects in the barrier layers. Under this excitation condition, the second-order photon autocorrelation measurements reveal that the cavity mode emission at nonzero detuning exhibits classical photon-statistics, while the bare exciton emission shows a clear partial anti-bunching. As we enter a Purcell factor enhancement regime, signaling a clear cavity-exciton coupling, the relative weight of the background recombination contribution to the cavity emission decreases. Consequently, the anti-bunching behavior is more significant than the bare exciton case – indicating that the photon statistics becomes more non-classical. These measurements are qualitatively explained using a medium-dependent master equation model that accounts for several excitons and a leaky cavity mode.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [Crossref] [PubMed]
  2. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. B 69, 205324 (2004).
    [Crossref]
  3. S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704 (2007).
    [Crossref]
  4. D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz,” New J. Phys. 10, 043035 (2008).
    [Crossref]
  5. A. Kiraz, M. Atatüre, and A. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
    [Crossref]
  6. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
    [Crossref] [PubMed]
  7. T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 081906 (2008).
    [Crossref]
  8. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
    [Crossref] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
    [Crossref] [PubMed]
  10. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
    [Crossref] [PubMed]
  11. M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303 (2008).
    [Crossref]
  12. S. Hughes and P. Yao, “Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system,” Opt. Express 17, 3322 (2009).
    [Crossref] [PubMed]
  13. A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
    [Crossref]
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
    [Crossref]
  15. N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, “Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87, 172101 (2005).
    [Crossref]
  16. T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16, 5199 (2008).
    [Crossref] [PubMed]
  17. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
    [Crossref]
  18. T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638 (1999).
    [Crossref]
  19. B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
    [Crossref]
  20. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [Crossref] [PubMed]
  21. T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe, and T. Sogawa, “Cavity-QED assisted “attraction” between an exciton and a cavity mode in a planar photonic crystal cavity,” Submitted.
  22. H. Kukimoto, C. H. Henry, and F. R. Merritt, “Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration,” Phys. Rev. B 7, 2486 (1973).
    [Crossref]
  23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  24. E. Illes, P. Yao, and S. Hughes, “Unusual quantum correlations and photon antibunching in an off-resonant quantum dot photonic-crystal cavity system,” Accepted for CLEO/IQEC (Paper: ITuJ3), Baltimore, 2009.

2009 (1)

2008 (4)

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz,” New J. Phys. 10, 043035 (2008).
[Crossref]

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 081906 (2008).
[Crossref]

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16, 5199 (2008).
[Crossref] [PubMed]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303 (2008).
[Crossref]

2007 (3)

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704 (2007).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

2006 (1)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

2005 (2)

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, “Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87, 172101 (2005).
[Crossref]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

2004 (4)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

A. Kiraz, M. Atatüre, and A. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[Crossref]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. B 69, 205324 (2004).
[Crossref]

2002 (2)

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
[Crossref]

2001 (1)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

1999 (2)

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638 (1999).
[Crossref]

1973 (1)

H. Kukimoto, C. H. Henry, and F. R. Merritt, “Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration,” Phys. Rev. B 7, 2486 (1973).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Amann, M.-C.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303 (2008).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

A. Kiraz, M. Atatüre, and A. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[Crossref]

Awschalom, D. D.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Axt, V. M.

B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
[Crossref]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Bennett, A. J.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz,” New J. Phys. 10, 043035 (2008).
[Crossref]

Bichler, M.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303 (2008).
[Crossref]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704 (2007).
[Crossref]

Burkard, G.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Cade, N. I.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16, 5199 (2008).
[Crossref] [PubMed]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, “Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87, 172101 (2005).
[Crossref]

Coldren, L. A.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704 (2007).
[Crossref]

Deppe, D. G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Dewhurst, S. J.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz,” New J. Phys. 10, 043035 (2008).
[Crossref]

Ding, D.

DiVincenzo, D. P.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Ellis, D. P. J.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz,” New J. Phys. 10, 043035 (2008).
[Crossref]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Fattal, D.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. B 69, 205324 (2004).
[Crossref]

Finley, J. J.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303 (2008).
[Crossref]

Forchel, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Gibbs, H. M.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Gotoh, H.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 081906 (2008).
[Crossref]

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16, 5199 (2008).
[Crossref] [PubMed]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, “Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87, 172101 (2005).
[Crossref]

Götzinger, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Hendrickson, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Henry, C. H.

H. Kukimoto, C. H. Henry, and F. R. Merritt, “Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration,” Phys. Rev. B 7, 2486 (1973).
[Crossref]

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Hughes, S.

S. Hughes and P. Yao, “Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system,” Opt. Express 17, 3322 (2009).
[Crossref] [PubMed]

E. Illes, P. Yao, and S. Hughes, “Unusual quantum correlations and photon antibunching in an off-resonant quantum dot photonic-crystal cavity system,” Accepted for CLEO/IQEC (Paper: ITuJ3), Baltimore, 2009.

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe, and T. Sogawa, “Cavity-QED assisted “attraction” between an exciton and a cavity mode in a planar photonic crystal cavity,” Submitted.

Illes, E.

E. Illes, P. Yao, and S. Hughes, “Unusual quantum correlations and photon antibunching in an off-resonant quantum dot photonic-crystal cavity system,” Accepted for CLEO/IQEC (Paper: ITuJ3), Baltimore, 2009.

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

A. Kiraz, M. Atatüre, and A. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[Crossref]

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Johnson, S. R.

Kamada, H.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16, 5199 (2008).
[Crossref] [PubMed]

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 081906 (2008).
[Crossref]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, “Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87, 172101 (2005).
[Crossref]

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe, and T. Sogawa, “Cavity-QED assisted “attraction” between an exciton and a cavity mode in a planar photonic crystal cavity,” Submitted.

Kamp, M.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

Kaniber, M.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303 (2008).
[Crossref]

Keldysh, L. V.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Khitrova, G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Kiraz, A.

A. Kiraz, M. Atatüre, and A. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[Crossref]

Krummheuer, B.

B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Kuhn, T.

B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
[Crossref]

Kukimoto, H.

H. Kukimoto, C. H. Henry, and F. R. Merritt, “Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration,” Phys. Rev. B 7, 2486 (1973).
[Crossref]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Kuramochi, E.

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Laucht, A.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303 (2008).
[Crossref]

Löffler, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Loss, D.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Merritt, F. R.

H. Kukimoto, C. H. Henry, and F. R. Merritt, “Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration,” Phys. Rev. B 7, 2486 (1973).
[Crossref]

Mikami, O.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 081906 (2008).
[Crossref]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Mosor, S.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Nakano, H.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 081906 (2008).
[Crossref]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, “Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87, 172101 (2005).
[Crossref]

Neumann, A.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303 (2008).
[Crossref]

Nicoll, C. A.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz,” New J. Phys. 10, 043035 (2008).
[Crossref]

Notomi, M.

Okamoto, H.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 081906 (2008).
[Crossref]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, “Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87, 172101 (2005).
[Crossref]

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe, and T. Sogawa, “Cavity-QED assisted “attraction” between an exciton and a cavity mode in a planar photonic crystal cavity,” Submitted.

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704 (2007).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rakher, M.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704 (2007).
[Crossref]

Reinecke, T. L.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Richards, B. C.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Ritchie, D. A.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz,” New J. Phys. 10, 043035 (2008).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Santori, C.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. B 69, 205324 (2004).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Scherer, A.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Sek, G.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Shchekin, O. B.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Sherwin, M.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Shields, A. J.

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz,” New J. Phys. 10, 043035 (2008).
[Crossref]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Small, A.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Sogawa, T.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16, 5199 (2008).
[Crossref] [PubMed]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, “Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87, 172101 (2005).
[Crossref]

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe, and T. Sogawa, “Cavity-QED assisted “attraction” between an exciton and a cavity mode in a planar photonic crystal cavity,” Submitted.

Solomon, G. S.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. B 69, 205324 (2004).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704 (2007).
[Crossref]

Strauf, S.

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704 (2007).
[Crossref]

Sweet, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Takagahara, T.

T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638 (1999).
[Crossref]

Tanabe, T.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16, 5199 (2008).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe, and T. Sogawa, “Cavity-QED assisted “attraction” between an exciton and a cavity mode in a planar photonic crystal cavity,” Submitted.

Tawara, T.

T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16, 5199 (2008).
[Crossref] [PubMed]

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 081906 (2008).
[Crossref]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, “Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87, 172101 (2005).
[Crossref]

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe, and T. Sogawa, “Cavity-QED assisted “attraction” between an exciton and a cavity mode in a planar photonic crystal cavity,” Submitted.

Villas-Bôas, J. M.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303 (2008).
[Crossref]

Vuckovic, J.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. B 69, 205324 (2004).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Waks, E.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. B 69, 205324 (2004).
[Crossref]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Yamaguchi, T.

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 081906 (2008).
[Crossref]

Yamamoto, Y.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. B 69, 205324 (2004).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Yao, P.

S. Hughes and P. Yao, “Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system,” Opt. Express 17, 3322 (2009).
[Crossref] [PubMed]

E. Illes, P. Yao, and S. Hughes, “Unusual quantum correlations and photon antibunching in an off-resonant quantum dot photonic-crystal cavity system,” Accepted for CLEO/IQEC (Paper: ITuJ3), Baltimore, 2009.

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe, and T. Sogawa, “Cavity-QED assisted “attraction” between an exciton and a cavity mode in a planar photonic crystal cavity,” Submitted.

Yoshie, T.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Zhang, Y. -H.

Appl. Phys. Lett. (4)

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, “Single-photon emission from single quantum dots in a hybrid pillar microcavity,” Appl. Phys. Lett. 92, 081906 (2008).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, “Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87, 172101 (2005).
[Crossref]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Nature (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Nature Photon. (1)

S. Strauf, N. G. Stoltz, M. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nature Photon. 1, 704 (2007).
[Crossref]

New J. Phys. (1)

D. P. J. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz,” New J. Phys. 10, 043035 (2008).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

A. Kiraz, M. Atatüre, and A. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[Crossref]

Phys. Rev. B (5)

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. B 69, 205324 (2004).
[Crossref]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303 (2008).
[Crossref]

T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638 (1999).
[Crossref]

B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
[Crossref]

H. Kukimoto, C. H. Henry, and F. R. Merritt, “Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration,” Phys. Rev. B 7, 2486 (1973).
[Crossref]

Phys. Rev. Lett. (4)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Other (2)

T. Tawara, S. Hughes, H. Kamada, P. Yao, H. Okamoto, T. Tanabe, and T. Sogawa, “Cavity-QED assisted “attraction” between an exciton and a cavity mode in a planar photonic crystal cavity,” Submitted.

E. Illes, P. Yao, and S. Hughes, “Unusual quantum correlations and photon antibunching in an off-resonant quantum dot photonic-crystal cavity system,” Accepted for CLEO/IQEC (Paper: ITuJ3), Baltimore, 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic of the PhC system and (b) scanning electron microscope image of line-defect cavity with local width modulation. The air holes (A, B, C) were shifted 6, 4 and 2 nm outwards from their original positions, respectively. Typical PL spectra of (c) ensemble QD and (d) QDs in PhC cavity measured at 4K. The excitation used was Ar+ -ion laser in both cases. Labels ‘C’ and ‘X in (d) indicate the emission form the cavity mode and single exciton, respectively.

Fig. 2.
Fig. 2.

(a) and (b): Spectra of bright cavity emissions from QD PCs with various r/a ratios, accompanied by the off-resonant exciton emissions, and measured at 4 K. The r/a ratio is varied from 0.258 (upper) to 0.250 (lower). The excitation energies are (a) 2.54 eV and (b) 1.17 eV, and each spectrum with the same r/a between these is from the same cavity. Blue- and red-shaded areas correspond to the cavity mode emissions. The red arrows in (b) indicate the cavity mode position, which is assumed by (a). The dotted lines show the offset line of zero intensity and the absolute value of the vertical scale is the same for all data. Insets magnify the top and bottom spectra in each figure. (c) PL spectrum of GaAs thin film without QD layer excited by 2.54 eV pump at 4 K. (d) Schematic relation between the excitation energy and optical response in our sample; the blue and red areas indicate the band tail of GaAs and InGaAs QW, respectively.

Fig. 3.
Fig. 3.

PL intensity mapping for CavI with cavity mode detuning at 4 K. The r/a of this cavity corresponds to 0.248. PL spectra at A and B (dashed lines on the intensity mapping) are also shown.

Fig. 4.
Fig. 4.

PL intensity mapping for CavII with cavity mode detuning at 4 K. The r/a of this cavity is 0.250. Note that this exciton-cavity system is different device from that shown in Figs. 2(a) and (b). PL spectra at A and B (dashed lines on the intensity mapping) are also shown.

Fig. 5.
Fig. 5.

Measured second-order autocorrelation function of (a) g c+x (2)(τ) for CavI, and (b) gc (2)(τ), (c) gx (2)(τ), and (d) g c+x (2)(τ) for CavII, respectively. The detuning of (b) and (c) are both δ = 0.6 meV. Each dashed line indicates g (2)(τ) = 1. All cases correspond to above barrier excitation (2.54 eV pump).

Fig. 6.
Fig. 6.

Calculated second-order autocorrelation function g (2)(τ) for exciton (blue dashed curve) and cavity mode (red solid curve). The positive delay times are only shown here because of symmetry. The parameters used are exciton-cavity coupling g = 8 μeV, pure dephasing γ′ = 40 μeV, exciton radiative broadening Γ x = 2 μeV, and repetition time of 2.4 ns. Each system includes (a) one exciton with δ = 0.6 meV, (b) two excitons with δ = 0.6 and 1.0 meV, and (c) with δ = 0 and 1.0 meV. (d) g (2)(τ) of (b) highlight the early time dynamics, showing rapid oscillations; note there are also fast oscillations of the cavity mode autocorrelation in (a), but these are hard to see on the timescale shown, and they have little qualitative influence.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S cav ( R , ω ) = F ( R ) Γ c ω c g ω 2 ω c 2 + i ω Γ c 2 ω + ω x ω 2 ω x 2 + i ω Γ x eff 2 ,
S cav ( R , ω ) = F ( R ) Γ c ω c g ω 2 ω c 2 + i ω Γ c 2 i = 1 , n ω + ω x ω 2 ω x i 2 + i ω Γ x i eff 2 .
S rad i ( R , ω ) = F ( R ) Γ b ω + ω x ω 2 ω x i 2 + i ω Γ x i eff 2 ,

Metrics