Abstract

We present here a self-starting passively mode-locked fiber ring laser with a novel cavity configuration using a four-port optical circulator. Our special ring cavity design enables highly stable mode-locked operation between 25 and 60°C to be maintained without the need for any polarization-adjusting devices. The pulse width and the integrated timing jitter from 10 Hz to 10 MHz of our fiber ring laser were measured to be 120 fs and 39.1 fs, respectively. As a result, a robust and environmentally stable all-fiber mode-locked fiber ring laser with a simple ring cavity configuration in a small package has been achieved.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
    [CrossRef]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windler, J. L. Hall, and S. T. Cundiff, "Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  3. F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
    [CrossRef] [PubMed]
  4. J. Jiang, A. Onae, H. Matsumoto, and F-L. Hong, "Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier envelope offset frequency control," Opt. Express 13, 1958-1965 (2005).
    [CrossRef] [PubMed]
  5. H. Inaba, Y. Daimon, F-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, "Long-term measurement of optical frequencies using robust and low-noise fiber based frequency comb," Opt. Express 14, 5223-5231 (2006).
    [CrossRef] [PubMed]
  6. I. N. DulingIII, "Subpicosecond all-fiber erbium laser" Electron. Lett. 27, 544-545 (1991).
    [CrossRef]
  7. M. Holfer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, "Modelocking with cross-phase and self-phase modulation," Opt. Lett. 16, 502-504 (1991).
    [CrossRef]
  8. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, "Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
    [CrossRef]
  9. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked fiber ring laser," Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  10. M. Nakazawa, E. Yoshida, T. Sugawa, and Y. Kimura, "Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fibre laser with nonlinear polarisation rotation," Electron. Lett. 29, 1327-1329 (1993).
    [CrossRef]
  11. E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode-locked polarization maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993).
    [CrossRef]
  12. Q1. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Ultrafast fiber pulsed laser incorporating carbon nanotubes," IEEE J. Sel. Top. Quantum Electron. 10, 137-146 (2004).
    [CrossRef]
  13. F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, "A passively mode-locked femtosecond soliton fiber laser at 1.5 ?m with a CNT-doped polycarbonate saturable absorber," Opt. Express 16, 21191-21198 (2008).
    [CrossRef] [PubMed]
  14. M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, "Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses," Opt. Lett. 19, 43-45 (1994).
    [CrossRef] [PubMed]
  15. H. Lim, A. Chong, and F. W. Wise, "Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber," Opt. Express 13, 3460-3464 (2005).
    [CrossRef] [PubMed]
  16. C. K. Nielsen and S. R. Keiding, "All-fiber mode-locked laser," Opt. Lett. 32, 1474-1476 (2007).
    [CrossRef] [PubMed]
  17. R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, "Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber," IEEE Photon. Technol. Lett. 20, 217-219 (2008).
    [CrossRef]
  18. I. N. DulingIII and R. D. Esman, "Single-polarisation fibre amplifier," Electron. Lett. 28, 1126-1128 (1992).
    [CrossRef]
  19. T. F. Carruthers, I. N. DulingIII and M. L. Dennis, "Active-passive modelocking in asingle-polarisation erbium fibre laser," Electron. Lett. 30, 1051-1053 (1994).
    [CrossRef]
  20. C. K. Nielsen, B. Ortac, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tunnermann, Selfstarting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
    [CrossRef] [PubMed]
  21. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, "All-polarization maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber," Opt. Express 16, 9429-9435 (2008).
    [CrossRef] [PubMed]
  22. www.batop.de

2008 (3)

2007 (1)

2006 (1)

2005 (3)

2004 (1)

Q1. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Ultrafast fiber pulsed laser incorporating carbon nanotubes," IEEE J. Sel. Top. Quantum Electron. 10, 137-146 (2004).
[CrossRef]

2003 (1)

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windler, J. L. Hall, and S. T. Cundiff, "Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

1999 (1)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

1994 (2)

M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, "Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses," Opt. Lett. 19, 43-45 (1994).
[CrossRef] [PubMed]

T. F. Carruthers, I. N. DulingIII and M. L. Dennis, "Active-passive modelocking in asingle-polarisation erbium fibre laser," Electron. Lett. 30, 1051-1053 (1994).
[CrossRef]

1993 (3)

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked fiber ring laser," Opt. Lett. 18, 1080-1082 (1993).
[CrossRef] [PubMed]

M. Nakazawa, E. Yoshida, T. Sugawa, and Y. Kimura, "Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fibre laser with nonlinear polarisation rotation," Electron. Lett. 29, 1327-1329 (1993).
[CrossRef]

E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode-locked polarization maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993).
[CrossRef]

1992 (2)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, "Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

I. N. DulingIII and R. D. Esman, "Single-polarisation fibre amplifier," Electron. Lett. 28, 1126-1128 (1992).
[CrossRef]

1991 (2)

Andrejco, M. J.

Carruthers, T. F.

T. F. Carruthers, I. N. DulingIII and M. L. Dennis, "Active-passive modelocking in asingle-polarisation erbium fibre laser," Electron. Lett. 30, 1051-1053 (1994).
[CrossRef]

Chong, A.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windler, J. L. Hall, and S. T. Cundiff, "Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Daimon, Y.

De Souza, E. A.

E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode-locked polarization maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993).
[CrossRef]

Dennis, M. L.

T. F. Carruthers, I. N. DulingIII and M. L. Dennis, "Active-passive modelocking in asingle-polarisation erbium fibre laser," Electron. Lett. 30, 1051-1053 (1994).
[CrossRef]

Dianov, E. M.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, "Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber," IEEE Photon. Technol. Lett. 20, 217-219 (2008).
[CrossRef]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windler, J. L. Hall, and S. T. Cundiff, "Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

DiGiovanni, D. J.

E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode-locked polarization maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993).
[CrossRef]

Duling, I. N.

T. F. Carruthers, I. N. DulingIII and M. L. Dennis, "Active-passive modelocking in asingle-polarisation erbium fibre laser," Electron. Lett. 30, 1051-1053 (1994).
[CrossRef]

I. N. DulingIII and R. D. Esman, "Single-polarisation fibre amplifier," Electron. Lett. 28, 1126-1128 (1992).
[CrossRef]

Duling, I.N.

I. N. DulingIII, "Subpicosecond all-fiber erbium laser" Electron. Lett. 27, 544-545 (1991).
[CrossRef]

Esman, R. D.

I. N. DulingIII and R. D. Esman, "Single-polarisation fibre amplifier," Electron. Lett. 28, 1126-1128 (1992).
[CrossRef]

Fermann, M. E.

Guo, R.

Haberl, F.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windler, J. L. Hall, and S. T. Cundiff, "Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Haus, H. A.

Herda, R.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, "Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber," IEEE Photon. Technol. Lett. 20, 217-219 (2008).
[CrossRef]

Hirano, M.

Hohmuth, R.

Holfer, M.

Holzwarth, R.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Hong, F.-L.

Hong, F-L.

Inaba, H.

Ippen, E. P.

Itoga, E.

Itoh, K.

Jablonski, M.

Q1. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Ultrafast fiber pulsed laser incorporating carbon nanotubes," IEEE J. Sel. Top. Quantum Electron. 10, 137-146 (2004).
[CrossRef]

Jiang, J.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windler, J. L. Hall, and S. T. Cundiff, "Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Kaino, T.

Kataura, H.

Keiding, S. R.

Kimura, Y.

M. Nakazawa, E. Yoshida, T. Sugawa, and Y. Kimura, "Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fibre laser with nonlinear polarisation rotation," Electron. Lett. 29, 1327-1329 (1993).
[CrossRef]

Kivistö, S.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, "Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber," IEEE Photon. Technol. Lett. 20, 217-219 (2008).
[CrossRef]

Komatsu, K.

Kosolapov, A. F.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, "Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber," IEEE Photon. Technol. Lett. 20, 217-219 (2008).
[CrossRef]

Levchenko, A. E.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, "Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber," IEEE Photon. Technol. Lett. 20, 217-219 (2008).
[CrossRef]

Lim, H.

Limpert, J.

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, "Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

Matsumoto, H.

Minoshima, K.

Nakagawa, K.

Nakazawa, M.

Nelson, L. E.

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, "Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

Nielsen, C. K.

Nishizawa, N.

Ober, M. H.

Okhotnikov, O. G.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, "Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber," IEEE Photon. Technol. Lett. 20, 217-219 (2008).
[CrossRef]

Okuno, T.

Onae, A.

Onishi, M.

Ortac, B.

Payne, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, "Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

Pleibel, W.

E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode-locked polarization maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993).
[CrossRef]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windler, J. L. Hall, and S. T. Cundiff, "Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, "Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

Richter, W.

Sakakibara, Y.

Schibli, T. R.

Schmidt, A. J.

Schreiber, T.

Semjonov, S. L.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, "Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber," IEEE Photon. Technol. Lett. 20, 217-219 (2008).
[CrossRef]

Seno, Y.

Set, S. Y.

Q1. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Ultrafast fiber pulsed laser incorporating carbon nanotubes," IEEE J. Sel. Top. Quantum Electron. 10, 137-146 (2004).
[CrossRef]

Shirato, T.

Shohda, F.

Simpson, J. R.

E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode-locked polarization maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993).
[CrossRef]

Soccolich, C. E.

E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode-locked polarization maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windler, J. L. Hall, and S. T. Cundiff, "Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Stock, M. L.

Stolen, R. H.

E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode-locked polarization maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993).
[CrossRef]

Sugawa, T.

M. Nakazawa, E. Yoshida, T. Sugawa, and Y. Kimura, "Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fibre laser with nonlinear polarisation rotation," Electron. Lett. 29, 1327-1329 (1993).
[CrossRef]

Sumimura, K.

Tamura, K.

Tanaka, Y.

Q1. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Ultrafast fiber pulsed laser incorporating carbon nanotubes," IEEE J. Sel. Top. Quantum Electron. 10, 137-146 (2004).
[CrossRef]

Tunnermann, A.

Udem, Th.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Windler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windler, J. L. Hall, and S. T. Cundiff, "Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Wise, F. W.

Yaguchi, H.

Q1. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Ultrafast fiber pulsed laser incorporating carbon nanotubes," IEEE J. Sel. Top. Quantum Electron. 10, 137-146 (2004).
[CrossRef]

Yang, L.-M.

Yoshida, E.

M. Nakazawa, E. Yoshida, T. Sugawa, and Y. Kimura, "Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fibre laser with nonlinear polarisation rotation," Electron. Lett. 29, 1327-1329 (1993).
[CrossRef]

Electron. Lett. (6)

I. N. DulingIII, "Subpicosecond all-fiber erbium laser" Electron. Lett. 27, 544-545 (1991).
[CrossRef]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, "Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

M. Nakazawa, E. Yoshida, T. Sugawa, and Y. Kimura, "Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fibre laser with nonlinear polarisation rotation," Electron. Lett. 29, 1327-1329 (1993).
[CrossRef]

E. A. De Souza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. DiGiovanni, "Saturable absorber mode-locked polarization maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993).
[CrossRef]

I. N. DulingIII and R. D. Esman, "Single-polarisation fibre amplifier," Electron. Lett. 28, 1126-1128 (1992).
[CrossRef]

T. F. Carruthers, I. N. DulingIII and M. L. Dennis, "Active-passive modelocking in asingle-polarisation erbium fibre laser," Electron. Lett. 30, 1051-1053 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Q1. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Ultrafast fiber pulsed laser incorporating carbon nanotubes," IEEE J. Sel. Top. Quantum Electron. 10, 137-146 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, "Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber," IEEE Photon. Technol. Lett. 20, 217-219 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windler, J. L. Hall, and S. T. Cundiff, "Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other (1)

www.batop.de

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.(a)
Fig. 1.(a)

Schematic configuration of mode-locked fiber ring laser using a four-port optical circulator, where the single-mode EDF was utilized as a gain medium.

Fig. 1.(b)
Fig. 1.(b)

Schematic configuration of all-PM mode-locked fiber ring laser using a four-port optical circulator.

Fig. 1.(c)
Fig. 1.(c)

Photograph of mode-locked fiber ring laser using a four-port optical circulator. The package size is 2.3×8×9 cm.

Fig. 2.
Fig. 2.

Changes in polarization modes of the optical pulses rounded in the cavity. A: Polarization mode of optical pulse transmitted through a PM fiber at A in Fig. 1(a). B: Polarization modes of optical pulses split into two modes at B by birefringence of the single-mode EDF. C: Two polarization modes split into four modes by PM fiber at C. D: Selected polarization mode by a polarizer embedded in a PM optical circulator.

Fig. 3.
Fig. 3.

RF spectrum of mode-locked fiber ring laser.

Fig. 4.
Fig. 4.

Autocorrelation trace of mode-locked fiber ring laser.

Fig. 5.
Fig. 5.

Optical spectrum of generated mode-locked pulse.

Fig. 6.
Fig. 6.

Relationship between length of the output coupler and output pulse width.

Fig. 7. (a)
Fig. 7. (a)

Autocorrelation trace of the shortest mode-locked optical pulse at the optimum output coupling fiber length.

Fig. 7. (b)
Fig. 7. (b)

Optical spectrum of mode-locked optical pulse at the optimum output coupling fiber length.

Fig. 8.
Fig. 8.

Changes in RF spectra of output pulses of our fiber ring laser with varying ambient temperatures.

Fig. 9. (a)
Fig. 9. (a)

Changes in RF spectra of output pulses of all- PM fiber ring laser with varying ambient temperatures.

Fig. 9. (b)
Fig. 9. (b)

Changes in autocorrelation traces of all-PM fiber ring laser with varying ambient temperatures.

Fig. 9. (c)
Fig. 9. (c)

Changes in optical spectra of all-PM fiber ring laser with varying ambient temperatures.

Fig. 10.
Fig. 10.

Repetition frequency variations of fiber ring lasers using a PM EDF and non-PM EDF with varying ambient temperatures.

Fig. 12.
Fig. 12.

Schematic diagram of stabilization of repetition frequency for fiber ring laser using a phase-locked loop.

Fig. 13.
Fig. 13.

Phase noise properties of our fiber ring laser under phase-locked operation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ t rms = 1 2 πn f rep . f 2 f 1 S n ( f ) df + f 2 f 1 S n ( f ) df ,

Metrics