Abstract

We demonstrate a novel method for femtosecond pulse generation based on a time-lens loop. Time division multiplexing in the loop is performed so that a high repetition rate can be achieved. Pulse width less than 500 fs is generated from a continuous wave (CW) laser without mode locking, and tunable repetition rate from 23 MHz to 400 MHz is demonstrated. Theoretical analysis shows that the repetition rate is ultimately limited by the in-loop interference. By using a 2×2 optical switch, such interference is further suppressed, and repetition rate as high as 1.1 GHz is demonstrated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, "Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling," Rev. Sci. Instrum. 78, 351071 (2007).
    [CrossRef]
  2. S. T. Cundiff, "Metrology: new generation of combs," Nature,  450, 1175-1176 (2007).
    [CrossRef] [PubMed]
  3. A. Bartels, T. Dekorsy, and H. Kurz, "Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
    [CrossRef]
  4. T. M. Fortier, A. Bartels, and S. A. Diddams, "Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons," Opt. Lett. 31, 1011-1013 (2006).
    [CrossRef] [PubMed]
  5. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, "Gigahertz-repetition-rate mode-locked fiber laser for continuum generation," Opt. Lett. 25, 1418-1420 (2000).
    [CrossRef]
  6. T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, "Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation," IEEE J. Quantum Electron. 35, 1412 (1999).
    [CrossRef]
  7. J. V. Howe, J. H. Lee, and C. Xu, "Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking," Opt. Lett. 32, 1408 (2007).
    [CrossRef] [PubMed]
  8. B. H. Kolner and M. Nazarathy, "Temporal imaging with a time lens," Opt. Lett. 14, 630 (1989).
    [CrossRef] [PubMed]
  9. J. V. Howe and C. Xu, "Ultrafast optical signal processing based upon space-time dualities," J. Lightwave Technol. 24, 2649 (2006).
    [CrossRef]

2007 (3)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, "Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling," Rev. Sci. Instrum. 78, 351071 (2007).
[CrossRef]

S. T. Cundiff, "Metrology: new generation of combs," Nature,  450, 1175-1176 (2007).
[CrossRef] [PubMed]

J. V. Howe, J. H. Lee, and C. Xu, "Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking," Opt. Lett. 32, 1408 (2007).
[CrossRef] [PubMed]

2006 (2)

2000 (1)

1999 (2)

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, "Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation," IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

A. Bartels, T. Dekorsy, and H. Kurz, "Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
[CrossRef]

1989 (1)

Bartels, A.

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, "Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling," Rev. Sci. Instrum. 78, 351071 (2007).
[CrossRef]

Cundiff, S. T.

S. T. Cundiff, "Metrology: new generation of combs," Nature,  450, 1175-1176 (2007).
[CrossRef] [PubMed]

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, "Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling," Rev. Sci. Instrum. 78, 351071 (2007).
[CrossRef]

A. Bartels, T. Dekorsy, and H. Kurz, "Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
[CrossRef]

Diddams, S. A.

Fortier, T. M.

Haus, H. A.

Howe, J. V.

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, "Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling," Rev. Sci. Instrum. 78, 351071 (2007).
[CrossRef]

Ippen, E. P.

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, "Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling," Rev. Sci. Instrum. 78, 351071 (2007).
[CrossRef]

Khayim, T.

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, "Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation," IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

Kim, D.

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, "Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation," IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, "Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling," Rev. Sci. Instrum. 78, 351071 (2007).
[CrossRef]

Kobayashi, T.

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, "Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation," IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

Kolner, B. H.

Kurz, H.

Lee, J. H.

Nazarathy, M.

Sysoliatin, A.

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, "Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling," Rev. Sci. Instrum. 78, 351071 (2007).
[CrossRef]

Wong, W. S.

Xu, C.

Yamauchi, M.

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, "Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation," IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

Yu, C. X.

IEEE J. Quantum Electron. (1)

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, "Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation," IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

S. T. Cundiff, "Metrology: new generation of combs," Nature,  450, 1175-1176 (2007).
[CrossRef] [PubMed]

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, "Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling," Rev. Sci. Instrum. 78, 351071 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experiment setup of the time-division multiplexed time-lens loop based on a 3-dB coupler. EDFA: erbium-doped fiber amplifier; BPF: bandpass filter; PM: phase modulator; M: mirror; G: grating. (b) The principle of the multiplexing of the loop.

Fig. 2.
Fig. 2.

(a) The calculated FROG trace of the 9-loop and 34-loop pulses. (b) The intensity profile of the output pulse.

Fig. 3.
Fig. 3.

(a) The measured spectrum at point C in Fig. 1(a). The spectrum was taken at 0.2 nm resolution bandwidth. Insert: (left) an example of the measured output at point B; (right) the measured time-domain pulse shape at point C corresponding to the spectrum. (b) The measured interferometric autocorrelation trace of the dechirped pulse giving a 688 fs autocorrelation width with 436 fs deconvolved. Insert: calculated trace giving 673 fs autocorrelation width with 427 fs deconvolved.

Fig. 4.
Fig. 4.

Experiment setup of the time-division multiplexed time-lens loop based on a 2×2 switch.

Fig. 5.
Fig. 5.

(a) The measured spectrum and the time-domain pulse shape (insert) at point B in Fig. 4(a). The spectrum was taken at 0.2 nm resolution bandwidth. (b) The measured interferometric autocorrelation trace of the dechirped pulse giving a 742 fs autocorrelation width and 471 fs deconvolved. Insert: calculated trace giving 673 fs autocorrelation width with 427 fs deconvolved.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N × x = M × y

Metrics