P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6, S93–S105 (2008).
[Crossref]
R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71, 201–213 (2008).
[Crossref]
S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J. 95, 2976–2988 (2008).
[Crossref]
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
A. Esposito, H. C. Gerritsen, and F. S. Wouters, “Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis,” Biophys. J. 89, 4286–4299 (2005).
[Crossref]
[PubMed]
G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain analysis of fluorescence lifetimes,” J. Fluoresc. 15, 805–815 (2005).
[Crossref]
[PubMed]
P. Barber, S. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[Crossref]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
A. H. A. Clayton, Q. S. Hanley, and P. J. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
[Crossref]
W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]
M. Peter and S. M. Ameer-Beg, “Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004).
[Crossref]
[PubMed]
S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807–2817 (2004).
[Crossref]
[PubMed]
E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8, 381–390 (2003).
[Crossref]
[PubMed]
A. R. Reynolds, C. Tischer, P. J. Verveer, O. Rocks, and P. I. H. Bastiaens, “EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation,” Nat. Cell Biol. 5, 447–453 (2003).
[Crossref]
[PubMed]
P. J. Verveer and P. I. H. Bastiaens, “Evaluation of global analysis algorithms for single frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 209, 1–7 (2003).
[Crossref]
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
F. S. Wouters, P. J. Verveer, and P. I. H. Bastiaens, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203–211 (2001).
[Crossref]
[PubMed]
A. Schönle, M. Glatz, and S. W. Hell, “Four-dimensional multiphoton microscopy with time-correlated single-photon counting,” Appl. Opt. 39, 6306–6311 (2000).
[Crossref]
K. Carlsson, A. Liljeborg, R. M. Andersson, and H. Brismar, “Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: influence of parameter choice on system performance,” J. Microsc. 199, 106–114 (2000).
[Crossref]
[PubMed]
P. J. Verveer, A. Squire, and P. I. H. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J. 78, 2127–2137 (2000).
[Crossref]
[PubMed]
P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290, 1567–1570 (2000).
[Crossref]
[PubMed]
P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).'
[Crossref]
[PubMed]
F. S. Wouters and P. I. H. Bastiaens, “Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells,” Curr. Biol. 9, 1127–1130 (1999).
[Crossref]
[PubMed]
G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref]
[PubMed]
R. M. Clegg, “Fluorescence resonance energy tranfer,” Fluorescence Imaging Spectroscopy and Microscopy 137, 179–251 (1996).
D. M. Jameson, E. Gratton, and R. Hall, “The measurement and analysis of heterogeneous emissions by multi-frequency phase and modulation fluorometry.” Appl. Spec. Rev. 20, 55–106 (1984).
[Crossref]
P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6, S93–S105 (2008).
[Crossref]
P. Barber, S. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[Crossref]
M. Peter and S. M. Ameer-Beg, “Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004).
[Crossref]
[PubMed]
K. Carlsson, A. Liljeborg, R. M. Andersson, and H. Brismar, “Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: influence of parameter choice on system performance,” J. Microsc. 199, 106–114 (2000).
[Crossref]
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J. 95, 2976–2988 (2008).
[Crossref]
[PubMed]
P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6, S93–S105 (2008).
[Crossref]
P. Barber, S. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[Crossref]
E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8, 381–390 (2003).
[Crossref]
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
A. R. Reynolds, C. Tischer, P. J. Verveer, O. Rocks, and P. I. H. Bastiaens, “EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation,” Nat. Cell Biol. 5, 447–453 (2003).
[Crossref]
[PubMed]
P. J. Verveer and P. I. H. Bastiaens, “Evaluation of global analysis algorithms for single frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 209, 1–7 (2003).
[Crossref]
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
F. S. Wouters, P. J. Verveer, and P. I. H. Bastiaens, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203–211 (2001).
[Crossref]
[PubMed]
P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290, 1567–1570 (2000).
[Crossref]
[PubMed]
P. J. Verveer, A. Squire, and P. I. H. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J. 78, 2127–2137 (2000).
[Crossref]
[PubMed]
P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).'
[Crossref]
[PubMed]
F. S. Wouters and P. I. H. Bastiaens, “Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells,” Curr. Biol. 9, 1127–1130 (1999).
[Crossref]
[PubMed]
W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]
W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]
W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]
G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref]
[PubMed]
W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]
E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8, 381–390 (2003).
[Crossref]
[PubMed]
K. Carlsson, A. Liljeborg, R. M. Andersson, and H. Brismar, “Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: influence of parameter choice on system performance,” J. Microsc. 199, 106–114 (2000).
[Crossref]
[PubMed]
M. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The Phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. (2007).
[PubMed]
P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6, S93–S105 (2008).
[Crossref]
K. Carlsson, A. Liljeborg, R. M. Andersson, and H. Brismar, “Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: influence of parameter choice on system performance,” J. Microsc. 199, 106–114 (2000).
[Crossref]
[PubMed]
A. H. A. Clayton, Q. S. Hanley, and P. J. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
[Crossref]
G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain analysis of fluorescence lifetimes,” J. Fluoresc. 15, 805–815 (2005).
[Crossref]
[PubMed]
R. M. Clegg, “Fluorescence resonance energy tranfer,” Fluorescence Imaging Spectroscopy and Microscopy 137, 179–251 (1996).
R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71, 201–213 (2008).
[Crossref]
S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J. 95, 2976–2988 (2008).
[Crossref]
[PubMed]
M. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The Phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. (2007).
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
P. Barber, S. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[Crossref]
A. Esposito, H. C. Gerritsen, and F. S. Wouters, “Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis,” Biophys. J. 89, 4286–4299 (2005).
[Crossref]
[PubMed]
P. Barber, S. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[Crossref]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
A. Esposito, H. C. Gerritsen, and F. S. Wouters, “Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis,” Biophys. J. 89, 4286–4299 (2005).
[Crossref]
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6, S93–S105 (2008).
[Crossref]
P. Barber, S. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[Crossref]
G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref]
[PubMed]
R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71, 201–213 (2008).
[Crossref]
E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8, 381–390 (2003).
[Crossref]
[PubMed]
D. M. Jameson, E. Gratton, and R. Hall, “The measurement and analysis of heterogeneous emissions by multi-frequency phase and modulation fluorometry.” Appl. Spec. Rev. 20, 55–106 (1984).
[Crossref]
M. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The Phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. (2007).
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
D. M. Jameson, E. Gratton, and R. Hall, “The measurement and analysis of heterogeneous emissions by multi-frequency phase and modulation fluorometry.” Appl. Spec. Rev. 20, 55–106 (1984).
[Crossref]
A. H. A. Clayton, Q. S. Hanley, and P. J. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
[Crossref]
G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref]
[PubMed]
W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
D. M. Jameson, E. Gratton, and R. Hall, “The measurement and analysis of heterogeneous emissions by multi-frequency phase and modulation fluorometry.” Appl. Spec. Rev. 20, 55–106 (1984).
[Crossref]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6, S93–S105 (2008).
[Crossref]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807–2817 (2004).
[Crossref]
[PubMed]
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
[Crossref]
R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71, 201–213 (2008).
[Crossref]
G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref]
[PubMed]
G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref]
[PubMed]
K. Carlsson, A. Liljeborg, R. M. Andersson, and H. Brismar, “Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: influence of parameter choice on system performance,” J. Microsc. 199, 106–114 (2000).
[Crossref]
[PubMed]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6, S93–S105 (2008).
[Crossref]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J. 95, 2976–2988 (2008).
[Crossref]
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807–2817 (2004).
[Crossref]
[PubMed]
M. Peter and S. M. Ameer-Beg, “Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004).
[Crossref]
[PubMed]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807–2817 (2004).
[Crossref]
[PubMed]
G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain analysis of fluorescence lifetimes,” J. Fluoresc. 15, 805–815 (2005).
[Crossref]
[PubMed]
A. R. Reynolds, C. Tischer, P. J. Verveer, O. Rocks, and P. I. H. Bastiaens, “EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation,” Nat. Cell Biol. 5, 447–453 (2003).
[Crossref]
[PubMed]
P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290, 1567–1570 (2000).
[Crossref]
[PubMed]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
A. R. Reynolds, C. Tischer, P. J. Verveer, O. Rocks, and P. I. H. Bastiaens, “EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation,” Nat. Cell Biol. 5, 447–453 (2003).
[Crossref]
[PubMed]
E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8, 381–390 (2003).
[Crossref]
[PubMed]
S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807–2817 (2004).
[Crossref]
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
P. J. Verveer, A. Squire, and P. I. H. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J. 78, 2127–2137 (2000).
[Crossref]
[PubMed]
P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).'
[Crossref]
[PubMed]
E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8, 381–390 (2003).
[Crossref]
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
A. R. Reynolds, C. Tischer, P. J. Verveer, O. Rocks, and P. I. H. Bastiaens, “EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation,” Nat. Cell Biol. 5, 447–453 (2003).
[Crossref]
[PubMed]
S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J. 95, 2976–2988 (2008).
[Crossref]
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
A. H. A. Clayton, Q. S. Hanley, and P. J. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
[Crossref]
P. J. Verveer and P. I. H. Bastiaens, “Evaluation of global analysis algorithms for single frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 209, 1–7 (2003).
[Crossref]
[PubMed]
A. R. Reynolds, C. Tischer, P. J. Verveer, O. Rocks, and P. I. H. Bastiaens, “EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation,” Nat. Cell Biol. 5, 447–453 (2003).
[Crossref]
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
F. S. Wouters, P. J. Verveer, and P. I. H. Bastiaens, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203–211 (2001).
[Crossref]
[PubMed]
P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290, 1567–1570 (2000).
[Crossref]
[PubMed]
P. J. Verveer, A. Squire, and P. I. H. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J. 78, 2127–2137 (2000).
[Crossref]
[PubMed]
P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6, S93–S105 (2008).
[Crossref]
P. Barber, S. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[Crossref]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
A. Esposito, H. C. Gerritsen, and F. S. Wouters, “Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis,” Biophys. J. 89, 4286–4299 (2005).
[Crossref]
[PubMed]
F. S. Wouters, P. J. Verveer, and P. I. H. Bastiaens, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203–211 (2001).
[Crossref]
[PubMed]
P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290, 1567–1570 (2000).
[Crossref]
[PubMed]
F. S. Wouters and P. I. H. Bastiaens, “Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells,” Curr. Biol. 9, 1127–1130 (1999).
[Crossref]
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
M. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The Phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. (2007).
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
D. M. Jameson, E. Gratton, and R. Hall, “The measurement and analysis of heterogeneous emissions by multi-frequency phase and modulation fluorometry.” Appl. Spec. Rev. 20, 55–106 (1984).
[Crossref]
M. Peter and S. M. Ameer-Beg, “Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004).
[Crossref]
[PubMed]
S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807–2817 (2004).
[Crossref]
[PubMed]
P. J. Verveer, A. Squire, and P. I. H. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J. 78, 2127–2137 (2000).
[Crossref]
[PubMed]
S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J. 95, 2976–2988 (2008).
[Crossref]
[PubMed]
A. Esposito, H. C. Gerritsen, and F. S. Wouters, “Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis,” Biophys. J. 89, 4286–4299 (2005).
[Crossref]
[PubMed]
G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref]
[PubMed]
F. S. Wouters and P. I. H. Bastiaens, “Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells,” Curr. Biol. 9, 1127–1130 (1999).
[Crossref]
[PubMed]
G. Xouri, A. Squire, M. Dimaki, B. Geverts, P. J. Verveer, S. Taraviras, H. Nishitani, A. B. Houtsmuller, P. I. H. Bastiaens, and Z. Lygerou, “Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin,” EMBO J. 26, 1303–14 (2007).
[Crossref]
[PubMed]
T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens, and P. J. Parker, “Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility,” EMBO J. 20, 2723–2741 (2001).
[Crossref]
[PubMed]
R. M. Clegg, “Fluorescence resonance energy tranfer,” Fluorescence Imaging Spectroscopy and Microscopy 137, 179–251 (1996).
E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8, 381–390 (2003).
[Crossref]
[PubMed]
G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain analysis of fluorescence lifetimes,” J. Fluoresc. 15, 805–815 (2005).
[Crossref]
[PubMed]
K. Carlsson, A. Liljeborg, R. M. Andersson, and H. Brismar, “Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: influence of parameter choice on system performance,” J. Microsc. 199, 106–114 (2000).
[Crossref]
[PubMed]
P. J. Verveer and P. I. H. Bastiaens, “Evaluation of global analysis algorithms for single frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 209, 1–7 (2003).
[Crossref]
[PubMed]
A. H. A. Clayton, Q. S. Hanley, and P. J. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc. 213, 1–5 (2004).
[Crossref]
P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein-protein interactions using global analysis,” J. R. Soc. Interface 6, S93–S105 (2008).
[Crossref]
W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[Crossref]
R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71, 201–213 (2008).
[Crossref]
A. R. Reynolds, C. Tischer, P. J. Verveer, O. Rocks, and P. I. H. Bastiaens, “EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation,” Nat. Cell Biol. 5, 447–453 (2003).
[Crossref]
[PubMed]
P. Barber, S. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE 5700, 171–181 (2005).
[Crossref]
P. J. Verveer, F. S. Wouters, A. R. Reynolds, and P. I. H. Bastiaens, “Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane,” Science 290, 1567–1570 (2000).
[Crossref]
[PubMed]
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens, “An acylation cycle regulates localization and activity of palmitoylated Ras isoforms,” Science 307, 1746–1752 (2005).
[Crossref]
[PubMed]
P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).'
[Crossref]
[PubMed]
F. S. Wouters, P. J. Verveer, and P. I. H. Bastiaens, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203–211 (2001).
[Crossref]
[PubMed]
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
[Crossref]
M. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The Phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. (2007).
[PubMed]