Abstract

We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wiesner, “Conjugate coding”, SIGACT News 15, 77–88 (1983).
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 IEEE, New York, 175–179 (1984).
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum Cryptography”, Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  4. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned”, Nature London, 299, 802–803 (1982).
    [Crossref]
  5. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography”, J. Cryptology 5, 3 (1992).
    [Crossref]
  6. P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 Km long optical fiber interferometer”, Electron. Lett. 29, 634–635 (1993).
    [Crossref]
  7. P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical Networks”, Electron. Lett. 30, 1875–1876 (1994).
    [Crossref]
  8. P. D. Townsend, “Quantum Cryptography on Optical fiber networks”, Opt. Fiber Technol. 4, 345–370 (1998).
    [Crossref]
  9. K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution”, Phys. Rev. Lett. 89, (037902) (2002).
    [Crossref] [PubMed]
  10. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre”, New J. Phys. 7, 1–12 (2005).
    [Crossref]
  11. M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks”, Phys Rev. A, 77 (052321) (2008).
    [Crossref]
  12. J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in Sidebands of Phase-Modulated Light for Quantum Cryptography”, Phys. Rev. Lett. 82, 1656–1659 (1999).
    [Crossref]
  13. J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography”, Opt. Lett. 24, 104–106 (1999).
    [Crossref]
  14. O. Guerreau, J-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization”, IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
    [Crossref]
  15. J. Capmany and D. Novak, “Microwave Photonics combines two worlds”, Nature Photon. 1, 319–330 (2007).
    [Crossref]
  16. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals”, J. Lightwave Technol. 23, 702–721 (2005).
    [Crossref]
  17. C. H. Bennett, “Quantum cryptography using any two non-orthogonal states”, Phys. Rev. Lett. 68, (3121) (1992).
    [Crossref] [PubMed]
  18. J-M. Mérolla, L. Duraffourg, J. P. Goedgebuer, A. Soujaeff, F. Patois, and W. T. Rhodes, “Integrated quantum key distribution system using single sideband detection”, Eur. Phys. J. D 18, 141–146 (2002).
    [Crossref]
  19. M. Bloch, S. McLaughlin, J.M. Merolla, and F. Patois, “Frequency-coded quantum key distribution”, Opt. Lett. 32, 301–303 (2007).
    [Crossref] [PubMed]
  20. C. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge University Press, Cambridge, UK, (2005).
  21. N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution”, Phys. Rev. A 61 (052304) (2000).
    [Crossref]

2008 (1)

M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks”, Phys Rev. A, 77 (052321) (2008).
[Crossref]

2007 (2)

J. Capmany and D. Novak, “Microwave Photonics combines two worlds”, Nature Photon. 1, 319–330 (2007).
[Crossref]

M. Bloch, S. McLaughlin, J.M. Merolla, and F. Patois, “Frequency-coded quantum key distribution”, Opt. Lett. 32, 301–303 (2007).
[Crossref] [PubMed]

2005 (2)

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals”, J. Lightwave Technol. 23, 702–721 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre”, New J. Phys. 7, 1–12 (2005).
[Crossref]

2003 (1)

O. Guerreau, J-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization”, IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[Crossref]

2002 (3)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum Cryptography”, Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution”, Phys. Rev. Lett. 89, (037902) (2002).
[Crossref] [PubMed]

J-M. Mérolla, L. Duraffourg, J. P. Goedgebuer, A. Soujaeff, F. Patois, and W. T. Rhodes, “Integrated quantum key distribution system using single sideband detection”, Eur. Phys. J. D 18, 141–146 (2002).
[Crossref]

2000 (1)

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution”, Phys. Rev. A 61 (052304) (2000).
[Crossref]

1999 (2)

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in Sidebands of Phase-Modulated Light for Quantum Cryptography”, Phys. Rev. Lett. 82, 1656–1659 (1999).
[Crossref]

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography”, Opt. Lett. 24, 104–106 (1999).
[Crossref]

1998 (1)

P. D. Townsend, “Quantum Cryptography on Optical fiber networks”, Opt. Fiber Technol. 4, 345–370 (1998).
[Crossref]

1994 (1)

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical Networks”, Electron. Lett. 30, 1875–1876 (1994).
[Crossref]

1993 (1)

P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 Km long optical fiber interferometer”, Electron. Lett. 29, 634–635 (1993).
[Crossref]

1992 (2)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography”, J. Cryptology 5, 3 (1992).
[Crossref]

C. H. Bennett, “Quantum cryptography using any two non-orthogonal states”, Phys. Rev. Lett. 68, (3121) (1992).
[Crossref] [PubMed]

1983 (1)

S. Wiesner, “Conjugate coding”, SIGACT News 15, 77–88 (1983).

1982 (1)

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned”, Nature London, 299, 802–803 (1982).
[Crossref]

Bennett, C. H.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography”, J. Cryptology 5, 3 (1992).
[Crossref]

C. H. Bennett, “Quantum cryptography using any two non-orthogonal states”, Phys. Rev. Lett. 68, (3121) (1992).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 IEEE, New York, 175–179 (1984).

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography”, J. Cryptology 5, 3 (1992).
[Crossref]

Bloch, M.

Blow, K. J.

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical Networks”, Electron. Lett. 30, 1875–1876 (1994).
[Crossref]

Brassard, G.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography”, J. Cryptology 5, 3 (1992).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 IEEE, New York, 175–179 (1984).

Capmany, J.

Cova, S.

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical Networks”, Electron. Lett. 30, 1875–1876 (1994).
[Crossref]

Curty, M.

M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks”, Phys Rev. A, 77 (052321) (2008).
[Crossref]

Diamanti, E.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre”, New J. Phys. 7, 1–12 (2005).
[Crossref]

Duraffourg, L.

J-M. Mérolla, L. Duraffourg, J. P. Goedgebuer, A. Soujaeff, F. Patois, and W. T. Rhodes, “Integrated quantum key distribution system using single sideband detection”, Eur. Phys. J. D 18, 141–146 (2002).
[Crossref]

Fejer, M. M.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre”, New J. Phys. 7, 1–12 (2005).
[Crossref]

Gerry, C. C.

C. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge University Press, Cambridge, UK, (2005).

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum Cryptography”, Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Goedgebuer, J. P.

O. Guerreau, J-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization”, IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[Crossref]

J-M. Mérolla, L. Duraffourg, J. P. Goedgebuer, A. Soujaeff, F. Patois, and W. T. Rhodes, “Integrated quantum key distribution system using single sideband detection”, Eur. Phys. J. D 18, 141–146 (2002).
[Crossref]

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography”, Opt. Lett. 24, 104–106 (1999).
[Crossref]

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in Sidebands of Phase-Modulated Light for Quantum Cryptography”, Phys. Rev. Lett. 82, 1656–1659 (1999).
[Crossref]

Guerreau, O.

O. Guerreau, J-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization”, IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[Crossref]

Honjo, T.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre”, New J. Phys. 7, 1–12 (2005).
[Crossref]

Inoue, K.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre”, New J. Phys. 7, 1–12 (2005).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution”, Phys. Rev. Lett. 89, (037902) (2002).
[Crossref] [PubMed]

Knight, P. L.

C. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge University Press, Cambridge, UK, (2005).

Langrock, C.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre”, New J. Phys. 7, 1–12 (2005).
[Crossref]

Lütkenhaus, N.

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution”, Phys. Rev. A 61 (052304) (2000).
[Crossref]

Malassenet, F. J.

O. Guerreau, J-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization”, IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[Crossref]

Mazurenko, Y.

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography”, Opt. Lett. 24, 104–106 (1999).
[Crossref]

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in Sidebands of Phase-Modulated Light for Quantum Cryptography”, Phys. Rev. Lett. 82, 1656–1659 (1999).
[Crossref]

McLaughlin, S.

Merolla, J.M.

Mérolla, J-M.

O. Guerreau, J-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization”, IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[Crossref]

J-M. Mérolla, L. Duraffourg, J. P. Goedgebuer, A. Soujaeff, F. Patois, and W. T. Rhodes, “Integrated quantum key distribution system using single sideband detection”, Eur. Phys. J. D 18, 141–146 (2002).
[Crossref]

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography”, Opt. Lett. 24, 104–106 (1999).
[Crossref]

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in Sidebands of Phase-Modulated Light for Quantum Cryptography”, Phys. Rev. Lett. 82, 1656–1659 (1999).
[Crossref]

Moroder, T.

M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks”, Phys Rev. A, 77 (052321) (2008).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave Photonics combines two worlds”, Nature Photon. 1, 319–330 (2007).
[Crossref]

Ortega, B.

Pastor, D.

Patois, F.

M. Bloch, S. McLaughlin, J.M. Merolla, and F. Patois, “Frequency-coded quantum key distribution”, Opt. Lett. 32, 301–303 (2007).
[Crossref] [PubMed]

O. Guerreau, J-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization”, IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[Crossref]

J-M. Mérolla, L. Duraffourg, J. P. Goedgebuer, A. Soujaeff, F. Patois, and W. T. Rhodes, “Integrated quantum key distribution system using single sideband detection”, Eur. Phys. J. D 18, 141–146 (2002).
[Crossref]

Phoenix, D. J. D.

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical Networks”, Electron. Lett. 30, 1875–1876 (1994).
[Crossref]

Porte, H.

Rarity, J. G.

P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 Km long optical fiber interferometer”, Electron. Lett. 29, 634–635 (1993).
[Crossref]

Rhodes, W. T.

J-M. Mérolla, L. Duraffourg, J. P. Goedgebuer, A. Soujaeff, F. Patois, and W. T. Rhodes, “Integrated quantum key distribution system using single sideband detection”, Eur. Phys. J. D 18, 141–146 (2002).
[Crossref]

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography”, Opt. Lett. 24, 104–106 (1999).
[Crossref]

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in Sidebands of Phase-Modulated Light for Quantum Cryptography”, Phys. Rev. Lett. 82, 1656–1659 (1999).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum Cryptography”, Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Sales, S.

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography”, J. Cryptology 5, 3 (1992).
[Crossref]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography”, J. Cryptology 5, 3 (1992).
[Crossref]

Soujaeff, A.

O. Guerreau, J-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization”, IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[Crossref]

J-M. Mérolla, L. Duraffourg, J. P. Goedgebuer, A. Soujaeff, F. Patois, and W. T. Rhodes, “Integrated quantum key distribution system using single sideband detection”, Eur. Phys. J. D 18, 141–146 (2002).
[Crossref]

Takesue, H.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre”, New J. Phys. 7, 1–12 (2005).
[Crossref]

Tamaki, K.

M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks”, Phys Rev. A, 77 (052321) (2008).
[Crossref]

Tapster, P. R.

P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 Km long optical fiber interferometer”, Electron. Lett. 29, 634–635 (1993).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum Cryptography”, Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Townsend, P. D.

P. D. Townsend, “Quantum Cryptography on Optical fiber networks”, Opt. Fiber Technol. 4, 345–370 (1998).
[Crossref]

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical Networks”, Electron. Lett. 30, 1875–1876 (1994).
[Crossref]

P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 Km long optical fiber interferometer”, Electron. Lett. 29, 634–635 (1993).
[Crossref]

Waks, E.

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution”, Phys. Rev. Lett. 89, (037902) (2002).
[Crossref] [PubMed]

Wiesner, S.

S. Wiesner, “Conjugate coding”, SIGACT News 15, 77–88 (1983).

Wootters, W. K.

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned”, Nature London, 299, 802–803 (1982).
[Crossref]

Yamamoto, Y.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre”, New J. Phys. 7, 1–12 (2005).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution”, Phys. Rev. Lett. 89, (037902) (2002).
[Crossref] [PubMed]

Zbiden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum Cryptography”, Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zurek, W. H.

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned”, Nature London, 299, 802–803 (1982).
[Crossref]

Electron. Lett. (2)

P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 Km long optical fiber interferometer”, Electron. Lett. 29, 634–635 (1993).
[Crossref]

P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical Networks”, Electron. Lett. 30, 1875–1876 (1994).
[Crossref]

Eur. Phys. J. D (1)

J-M. Mérolla, L. Duraffourg, J. P. Goedgebuer, A. Soujaeff, F. Patois, and W. T. Rhodes, “Integrated quantum key distribution system using single sideband detection”, Eur. Phys. J. D 18, 141–146 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

O. Guerreau, J-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization”, IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
[Crossref]

J. Cryptology (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography”, J. Cryptology 5, 3 (1992).
[Crossref]

J. Lightwave Technol. (1)

Nature London, (1)

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned”, Nature London, 299, 802–803 (1982).
[Crossref]

Nature Photon. (1)

J. Capmany and D. Novak, “Microwave Photonics combines two worlds”, Nature Photon. 1, 319–330 (2007).
[Crossref]

New J. Phys. (1)

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre”, New J. Phys. 7, 1–12 (2005).
[Crossref]

Opt. Fiber Technol. (1)

P. D. Townsend, “Quantum Cryptography on Optical fiber networks”, Opt. Fiber Technol. 4, 345–370 (1998).
[Crossref]

Opt. Lett. (2)

Phys Rev. A, (1)

M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks”, Phys Rev. A, 77 (052321) (2008).
[Crossref]

Phys. Rev. A (1)

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution”, Phys. Rev. A 61 (052304) (2000).
[Crossref]

Phys. Rev. Lett. (3)

J-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in Sidebands of Phase-Modulated Light for Quantum Cryptography”, Phys. Rev. Lett. 82, 1656–1659 (1999).
[Crossref]

C. H. Bennett, “Quantum cryptography using any two non-orthogonal states”, Phys. Rev. Lett. 68, (3121) (1992).
[Crossref] [PubMed]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution”, Phys. Rev. Lett. 89, (037902) (2002).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum Cryptography”, Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

SIGACT News (1)

S. Wiesner, “Conjugate coding”, SIGACT News 15, 77–88 (1983).

Other (2)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 IEEE, New York, 175–179 (1984).

C. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge University Press, Cambridge, UK, (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

SCM_QKD system Layout [20]

Fig. 2.
Fig. 2.

Frequency spectrum, number of second harmonic distortion, frequency sum and difference intermodulation terms, and overall CSO number NCSOi) for a frequency plan composed of 15 evenly spaced channels spanning from 2 to 30 GHz.

Fig. 3.
Fig. 3.

QBER values versus the optical fiber link length in Km, obtained for the three frequency plan (N=15,N=30 and N=50) systems and for the case of a frequency coded (N=1) system. 3.a) m=2%, 3.b) m=8%

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

P = ρ ψ E ( t ) E + ( t ) ψ
E + ( t ) = j w ξ ( w ) a w e jwt
E ( t ) = j w ξ ( w ) a w + e jwt
ξ ( w ) = ħ w 2 ε 0 V 0
ψ A = ( 1 + e j Ψ 1 ) α w o j e j Φ 1 N e j Ψ 1 α w o Ω N j e j Φ 1 N 1 e j Ψ 1 α w o Ω N 1
j e j Φ 11 e j Ψ 1 α w o Ω 1 j e j Φ 11 e j Ψ 1 α w o + Ω 1
j e j Φ 1 N 1 e j Ψ 1 α w o + Ω N 1 j e j Φ 1 N e j Ψ 1 α w 0 + Ω N
ψ B = ( 1 + e j Ψ 1 ) ( 1 + e j Ψ 2 ) α w o j { ( 1 + e j Ψ 1 ) e j Ψ 2 e j Φ 2 i + ( 1 + e j Ψ 2 ) e j Ψ 1 e j Φ 1 i e jD ( Ω i ) } α w o Ω i
j { ( 1 + e j Ψ 1 ) e j Ψ 2 e j Φ 2 i + ( 1 + e j Ψ 2 ) e j Ψ 1 e j Φ 1 i e jD ( Ω i ) } α w o + Ω i
e j ( Ψ 1 + Ψ 2 ) e jD ( Ω l ) e j ( Φ 1 l + Φ 2 k ) α w o Ω l Ω k e j ( Ψ 1 + Ψ 2 ) e jD ( Ω l ) e j ( Φ 1 l Φ 2 k ) α w o Ω l + Ω k
e j ( Ψ 1 + Ψ 2 ) e jD ( Ω l ) e j ( Φ 1 l Φ 2 k ) α w o + Ω l Ω k e j ( Ψ 1 + Ψ 2 ) e jD ( Ω l ) e j ( Φ 1 l + Φ 2 k ) α w o + Ω l + Ω k
D ( Ω i ) = β 1 L Ω i + β 2 L 2 Ω i 2
α w o + Ω l Ω k = m 2 α w o + Ω i
ψ + Ω i = 0 0 0 0 0 c w o + Ω i α w o + Ω i
c w o + Ω i = [ j { ( 1 + e j Ψ 1 ) e j Ψ 2 e j Φ 2 i + + ( 1 + e j Ψ 2 ) e j Ψ 1 e j Φ 1 i e jD ( Ω i ) } m 2 e j ( Ψ 1 + Ψ 2 ) { e jD ( Ω l ) e j ( Φ 1 l Φ 2 k ) + Ω k k , l Ω l = Ω i + e jD ( Ω r ) e j ( Φ 1 r + Φ 2 s ) Ω r r , s + Ω s = Ω i } ]
ψ Ω i = 0 0 0 0 0 c w o Ω i α w o Ω i
c w o Ω i = [ j { ( 1 + e j Ψ 1 ) e j Ψ 2 e j Φ 2 i + + ( 1 + e j Ψ 2 ) e j Ψ 1 e j Φ 1 i e jD ( Ω i ) } m 2 e j ( Ψ 1 + Ψ 2 ) { e jD ( Ω l ) e j ( Φ 1 l Φ 2 k ) + Ω k k , l + Ω l = Ω i + e jD ( Ω r ) e j ( Φ 1 r + Φ 2 s ) Ω r r , s Ω s = Ω i } ]
P ± Ω i = c w o ± Ω i 2 ρ ξ 2 ( w 0 ± Ω i ) n w o ± Ω i
n w o ± Ω i = α w o ± Ω i a + a α w o ± Ω i
QBER ( Ω i ) = { ( 1 V ) + ( 1 QCNR CSO i ) } ρ T L μ ¯ i + d B 2 [ { 1 + ( 1 QCNR CSO i ) } ρ T L μ ¯ i + d B ]
QCNR CSO i = 16 m 2 N CSO ( Ω i )

Metrics