Abstract

For inter-satellite optical communication transmitter with reflective telescope of two-mirrors on axis, a large mount of the transmitted energy will be blocked by central obscuration of the secondary mirror. In this paper, a novel scheme based on diffractive optical element (DOE) is introduced to avoid it. This scheme includes one diffractive beam shaper and another diffractive phase corrector, which can diffract the obscured part of transmitted beam into the domain unobscured by the secondary mirror. The proposed approach is firstly researched with a fixed obscuration ratio of 1/4. Numerical simulation shows that the emission efficiency of new figuration is 99.99%; the beam divergence from the novel inter-satellite optical communication transmitter is unchanged; and the peak intensity of receiver plane is increased about 31% compared with the typical configuration. Then the intensity patterns of receiver plane are analyzed with various obscuration ratio, the corresponding numerical modelling reveals that the intensity patterns with various obscuration ratio are nearly identical, but the amplify of relative peak intensity is getting down with the growth of obscuration ratio. This work can improve the beam quality of inter-satellite optical communication system without affecting any other functionality.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Katzman, ed., Laser Satellite Communications, (Englewood Cliffs, N.J., Prentice-Hall, 1987).
  2. P. Henneberg and H. Schubert, "A new telescope concept for space communication," Proc. SPIE 1218, 153-159 (1990).
    [CrossRef]
  3. A. Yamamoto, T. Hori, T. Shimizu, and K. Nakagawa, "Japanese first optical inter-orbit communications engineering test satellite (OICETS)," Proc. SPIE 2210, 30-38 (1994).
    [CrossRef]
  4. H. Hemmati and N. Page, "Preliminary opto-mechanical design for the X2000 transceiver," Proc. SPIE 3615, 206-211 (1999).
    [CrossRef]
  5. M. Knapek, J. Horwath, N. Perlot, and B. Wilkerson, "The DLR ground station in the optical payload experiment (STROPEX) - results of the atmospheric measurement instruments," Proc. SPIE 6304, 63041U (2006).
    [CrossRef]
  6. W. N. Peters and A. M. Ledger, "Techniques for matching laser TEM00 mode to obstructed circular aperture," Appl. Opt. 9, 1435-1442 (1970).
    [CrossRef] [PubMed]
  7. B. J. Klein and J. J. Degnan, "Optical antenna gain 1: transmitting antennas," Appl. Opt. 13, 2134-2141 (1974).
    [CrossRef] [PubMed]
  8. O. D. Christy, "Dual-secondary mirror Cassegrain optical system," U. S. Patent 4,439,012, Mar. 27 (1984).
  9. X. L. Kong and P. M. Hao, "New method to remove central shade for reflecting laser beam expander," Chin. J. Quantum Electron. 19, 205-209 (2002).
  10. H. Hemmati and N. Page, "Approaches for efficient coupling of lasers to telescope with secondary mirror and baffle obscuration," Proc. SPIE 4635, 288-294 (2002).
    [CrossRef]
  11. C. W. Chen, "Re-imaging optical system including refractive and diffractive optical elements," U. S. Patent 5,287,218, Feb. 15 (1994).
  12. R. N. Smartt and E. W. Cross, "Advances in spherical-mirror telescopic systems design: application to largeaperature solar coronagraphs," Opt. Eng. 41, 2055-2058 (2002).
    [CrossRef]
  13. Z. Liu, H. Zhao, J. Liu, J. Lin, M. A. Ahmad, and S. Liu, "Generation of hollow Gaussian beams by spatial filtering," Opt. Lett. 32, 2076-2078 (2007).
    [CrossRef] [PubMed]
  14. Z. Liu, J. Dai, X. Sun, and S. Liu, "Generation of hollow Gaussian beam by phase-only filtering," Opt. Express 16, 19926-19933 (2008).
    [CrossRef] [PubMed]
  15. W. B. Veldkamp and T. J. McHugh, "Binary optics," Sci. Am. 266, 50-55 (1992).
  16. R.W. Gerchberg and W. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane picture," Optik 35, 227-246 (1972).
  17. J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. 15, 2758-2769 (1982).
    [CrossRef]
  18. G. R. Brady and J. R. Fienup, "Nonlinear optimization algorithm for retrieving the full complex pupil function," Opt. Express 14, 474-486 (2006).
    [CrossRef] [PubMed]
  19. C. Rydberg and J. Bengtsson, "Numerical algorithm for the retrieval of coherent beams from transverse intensity measurements," Opt. Express 15, 13613-13623 (2007).
    [CrossRef] [PubMed]
  20. B. Lin and N. C. Gallagher, "Convergence of a spectrum shaping algorithm," Appl. Opt. 13, 2470-2471 (1974).
    [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics, Second Edition, (New York, McGraw-Hill, 2006).

2008 (1)

2007 (2)

2006 (2)

G. R. Brady and J. R. Fienup, "Nonlinear optimization algorithm for retrieving the full complex pupil function," Opt. Express 14, 474-486 (2006).
[CrossRef] [PubMed]

M. Knapek, J. Horwath, N. Perlot, and B. Wilkerson, "The DLR ground station in the optical payload experiment (STROPEX) - results of the atmospheric measurement instruments," Proc. SPIE 6304, 63041U (2006).
[CrossRef]

2002 (3)

X. L. Kong and P. M. Hao, "New method to remove central shade for reflecting laser beam expander," Chin. J. Quantum Electron. 19, 205-209 (2002).

H. Hemmati and N. Page, "Approaches for efficient coupling of lasers to telescope with secondary mirror and baffle obscuration," Proc. SPIE 4635, 288-294 (2002).
[CrossRef]

R. N. Smartt and E. W. Cross, "Advances in spherical-mirror telescopic systems design: application to largeaperature solar coronagraphs," Opt. Eng. 41, 2055-2058 (2002).
[CrossRef]

1999 (1)

H. Hemmati and N. Page, "Preliminary opto-mechanical design for the X2000 transceiver," Proc. SPIE 3615, 206-211 (1999).
[CrossRef]

1994 (1)

A. Yamamoto, T. Hori, T. Shimizu, and K. Nakagawa, "Japanese first optical inter-orbit communications engineering test satellite (OICETS)," Proc. SPIE 2210, 30-38 (1994).
[CrossRef]

1992 (1)

W. B. Veldkamp and T. J. McHugh, "Binary optics," Sci. Am. 266, 50-55 (1992).

1990 (1)

P. Henneberg and H. Schubert, "A new telescope concept for space communication," Proc. SPIE 1218, 153-159 (1990).
[CrossRef]

1982 (1)

J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. 15, 2758-2769 (1982).
[CrossRef]

1974 (2)

1972 (1)

R.W. Gerchberg and W. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane picture," Optik 35, 227-246 (1972).

1970 (1)

Ahmad, M. A.

Bengtsson, J.

Brady, G. R.

Cross, E. W.

R. N. Smartt and E. W. Cross, "Advances in spherical-mirror telescopic systems design: application to largeaperature solar coronagraphs," Opt. Eng. 41, 2055-2058 (2002).
[CrossRef]

Dai, J.

Degnan, J. J.

Fienup, J. R.

Gallagher, N. C.

Gerchberg, R.W.

R.W. Gerchberg and W. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane picture," Optik 35, 227-246 (1972).

Hao, P. M.

X. L. Kong and P. M. Hao, "New method to remove central shade for reflecting laser beam expander," Chin. J. Quantum Electron. 19, 205-209 (2002).

Hemmati, H.

H. Hemmati and N. Page, "Approaches for efficient coupling of lasers to telescope with secondary mirror and baffle obscuration," Proc. SPIE 4635, 288-294 (2002).
[CrossRef]

H. Hemmati and N. Page, "Preliminary opto-mechanical design for the X2000 transceiver," Proc. SPIE 3615, 206-211 (1999).
[CrossRef]

Henneberg, P.

P. Henneberg and H. Schubert, "A new telescope concept for space communication," Proc. SPIE 1218, 153-159 (1990).
[CrossRef]

Hori, T.

A. Yamamoto, T. Hori, T. Shimizu, and K. Nakagawa, "Japanese first optical inter-orbit communications engineering test satellite (OICETS)," Proc. SPIE 2210, 30-38 (1994).
[CrossRef]

Horwath, J.

M. Knapek, J. Horwath, N. Perlot, and B. Wilkerson, "The DLR ground station in the optical payload experiment (STROPEX) - results of the atmospheric measurement instruments," Proc. SPIE 6304, 63041U (2006).
[CrossRef]

Klein, B. J.

Knapek, M.

M. Knapek, J. Horwath, N. Perlot, and B. Wilkerson, "The DLR ground station in the optical payload experiment (STROPEX) - results of the atmospheric measurement instruments," Proc. SPIE 6304, 63041U (2006).
[CrossRef]

Kong, X. L.

X. L. Kong and P. M. Hao, "New method to remove central shade for reflecting laser beam expander," Chin. J. Quantum Electron. 19, 205-209 (2002).

Ledger, A. M.

Lin, B.

Lin, J.

Liu, J.

Liu, S.

Liu, Z.

McHugh, T. J.

W. B. Veldkamp and T. J. McHugh, "Binary optics," Sci. Am. 266, 50-55 (1992).

Nakagawa, K.

A. Yamamoto, T. Hori, T. Shimizu, and K. Nakagawa, "Japanese first optical inter-orbit communications engineering test satellite (OICETS)," Proc. SPIE 2210, 30-38 (1994).
[CrossRef]

Page, N.

H. Hemmati and N. Page, "Approaches for efficient coupling of lasers to telescope with secondary mirror and baffle obscuration," Proc. SPIE 4635, 288-294 (2002).
[CrossRef]

H. Hemmati and N. Page, "Preliminary opto-mechanical design for the X2000 transceiver," Proc. SPIE 3615, 206-211 (1999).
[CrossRef]

Perlot, N.

M. Knapek, J. Horwath, N. Perlot, and B. Wilkerson, "The DLR ground station in the optical payload experiment (STROPEX) - results of the atmospheric measurement instruments," Proc. SPIE 6304, 63041U (2006).
[CrossRef]

Peters, W. N.

Rydberg, C.

Saxton, W.

R.W. Gerchberg and W. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane picture," Optik 35, 227-246 (1972).

Schubert, H.

P. Henneberg and H. Schubert, "A new telescope concept for space communication," Proc. SPIE 1218, 153-159 (1990).
[CrossRef]

Shimizu, T.

A. Yamamoto, T. Hori, T. Shimizu, and K. Nakagawa, "Japanese first optical inter-orbit communications engineering test satellite (OICETS)," Proc. SPIE 2210, 30-38 (1994).
[CrossRef]

Smartt, R. N.

R. N. Smartt and E. W. Cross, "Advances in spherical-mirror telescopic systems design: application to largeaperature solar coronagraphs," Opt. Eng. 41, 2055-2058 (2002).
[CrossRef]

Sun, X.

Veldkamp, W. B.

W. B. Veldkamp and T. J. McHugh, "Binary optics," Sci. Am. 266, 50-55 (1992).

Wilkerson, B.

M. Knapek, J. Horwath, N. Perlot, and B. Wilkerson, "The DLR ground station in the optical payload experiment (STROPEX) - results of the atmospheric measurement instruments," Proc. SPIE 6304, 63041U (2006).
[CrossRef]

Yamamoto, A.

A. Yamamoto, T. Hori, T. Shimizu, and K. Nakagawa, "Japanese first optical inter-orbit communications engineering test satellite (OICETS)," Proc. SPIE 2210, 30-38 (1994).
[CrossRef]

Zhao, H.

Appl. Opt. (4)

Chin. J. Quantum Electron. (1)

X. L. Kong and P. M. Hao, "New method to remove central shade for reflecting laser beam expander," Chin. J. Quantum Electron. 19, 205-209 (2002).

Opt. Eng. (1)

R. N. Smartt and E. W. Cross, "Advances in spherical-mirror telescopic systems design: application to largeaperature solar coronagraphs," Opt. Eng. 41, 2055-2058 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Optik (1)

R.W. Gerchberg and W. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane picture," Optik 35, 227-246 (1972).

Proc. SPIE (5)

H. Hemmati and N. Page, "Approaches for efficient coupling of lasers to telescope with secondary mirror and baffle obscuration," Proc. SPIE 4635, 288-294 (2002).
[CrossRef]

P. Henneberg and H. Schubert, "A new telescope concept for space communication," Proc. SPIE 1218, 153-159 (1990).
[CrossRef]

A. Yamamoto, T. Hori, T. Shimizu, and K. Nakagawa, "Japanese first optical inter-orbit communications engineering test satellite (OICETS)," Proc. SPIE 2210, 30-38 (1994).
[CrossRef]

H. Hemmati and N. Page, "Preliminary opto-mechanical design for the X2000 transceiver," Proc. SPIE 3615, 206-211 (1999).
[CrossRef]

M. Knapek, J. Horwath, N. Perlot, and B. Wilkerson, "The DLR ground station in the optical payload experiment (STROPEX) - results of the atmospheric measurement instruments," Proc. SPIE 6304, 63041U (2006).
[CrossRef]

Sci. Am. (1)

W. B. Veldkamp and T. J. McHugh, "Binary optics," Sci. Am. 266, 50-55 (1992).

Other (4)

C. W. Chen, "Re-imaging optical system including refractive and diffractive optical elements," U. S. Patent 5,287,218, Feb. 15 (1994).

O. D. Christy, "Dual-secondary mirror Cassegrain optical system," U. S. Patent 4,439,012, Mar. 27 (1984).

M. Katzman, ed., Laser Satellite Communications, (Englewood Cliffs, N.J., Prentice-Hall, 1987).

J. W. Goodman, Introduction to Fourier Optics, Second Edition, (New York, McGraw-Hill, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The typical simplified scheme of inter-satellite optical communication transmitter.

Fig. 2.
Fig. 2.

Improved configuration of inter-satellite optical communication transmitter.

Fig. 3.
Fig. 3.

Flow chart of GS algorithm.

Fig. 4.
Fig. 4.

The beam transformation in inter-satellite optical communication transmitter.

Fig. 5.
Fig. 5.

Quantized phase distribution of DOEs (n=16). (a): beam shaper; (b): phase corrector

Fig. 6.
Fig. 6.

Beam intensity distribution of the receiver plane.

Fig. 7.
Fig. 7.

The intensity distribution of receiver plane with various obscuration ratio.

Fig. 8.
Fig. 8.

The relative intensity distribution of receiver plane with various obscuration ratio.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

SSE = ( E in ) B 2 dx 2 dy 2 B 2 dx 2 dy 2 < ζ ,
η E = E ' E × 100 % ,
E 4 ( x 4 , y 4 ) = e jkz e jk 2 z ( x 3 2 + y 3 2 ) jλz E 3 ( x 3 , y 3 ) exp [ jk z ( x 3 x 4 + y 3 y 4 ) ] dx 3 dy 3
= e jkz e jk 2 z ( x 3 2 + y 3 2 ) jλz . { E 3 ( x 3 , y 3 ) } f x = x 4 λz , f y = y 4 λz ,
I 4 ( x 4 , y 4 ) = ( 1 λz ) 2 · { E 3 ( x 3 , y 3 ) } 2 .
η P = I 4 max I 4 max I 4 max × 100 % ,
E 3 ( r 3 ) = C ( r 3 ) · exp ( ) .
C ( r 3 ) = { exp ( r 3 2 / ω 03 2 ) , if r 30 r 3 r 3 m 0 , otherwise ,
B ( r 2 ) = { c 2 · exp ( r 2 2 / ω 02 2 ) , if r 20 r 2 r 2 m 0 , otherwise ,
A ( r 1 ) = c 1 · exp ( r 1 2 / ω 01 2 ) ,

Metrics