Abstract

We study the injection locking bistability of a specially engineered two-color semiconductor Fabry-Pérot laser. Oscillation in the uninjected primary mode leads to a bistability of single mode and two-color equilibria. With pulsed modulation of the injected power we demonstrate an all-optical memory element based on this bistability, where the uninjected primary mode is switched with 35 dB intensity contrast. Using experimental and theoretical analysis, we describe the associated bifurcation structure, which is not found in single mode systems with optical injection.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Otsuka and S. Kobayashi, "Optical bistability and nonlinear resonance in a resonant-type semiconductor laser amplifier," Electron. Lett. 19, 262-263 (1983).
    [CrossRef]
  2. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
    [CrossRef]
  3. S. Ishii and T. Baba, "Bistable lasing in twin microdisk photonic molecules," Appl. Phys. Lett. 87, 181102 (2005).
    [CrossRef]
  4. M. Raburn, M. Takenada, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, "Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops," IEEE Photon. Technol. Lett. 18, 1421-1423 (2006).
    [CrossRef]
  5. S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, "Switchable lasing in multimode microcavities," Phys. Rev. Lett. 99, 073902 (2007).
    [CrossRef] [PubMed]
  6. Y. D. Jeong, J. S. Cho, Y. H. Won, H. J. Lee, and H. Yoo, "All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode," Opt. Express 14, 4058-4063 (2006).
    [CrossRef] [PubMed]
  7. Z. Wang, G. Verschaffelt, Y. Shu, G. Mezosi, M. Sorel, J. Danckaert, and S. Yu, "Integrated small-sized semiconductor ring laser with novel retro-reflector cavity," IEEE Photon. Technol. Lett. 20, 99-101 (2008).
    [CrossRef]
  8. F. Ramos, E. Kehayas, J. M. Martinez, R. Clavero, J. Marti, L. Stampoulidis, D. Tsiokos, H. Avramopoulos, J. Zhang, P. V. Holm-Nielsen, N. Chi, P. Jeppesen, N. Yan, I. Tafur Monroy, A. M. J. Koonen, M. T. Hill, Y. Liu, H. J. S. Dorren, R. Van Caenegem, D. Colle, M. Pickavet, and B. Riposati, "IST-LASANGE: Towards all-optical label swapping employing optical logic gates and optical flip-flops," J. Lightwave Technol. 23, 2993-3011 (2005).
    [CrossRef]
  9. H. Kawaguchi and I. S. Hidayat, "Gigahertz all-optical flip-flop operation of polarisation-bistable vertical-cavity surface-emitting lasers," Electron. Lett. 31, 1150-1151 (1995).
    [CrossRef]
  10. T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low-switching energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
    [CrossRef]
  11. Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, "Realization of a semiconductor-based cavity soliton laser," Phys. Rev. Lett. 100, 013907 (2008).
    [CrossRef] [PubMed]
  12. S. Schikora, P. Hövel, H.-J. Wünsche, E. Schöll, and F. Henneberger, "All-optical noninvasive control of unstable steady states in a semiconductor laser," Phys. Rev. Lett. 97, 213902 (2006).
    [CrossRef] [PubMed]
  13. I. Fischer, Y. Liu, and P. Davis, "Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication," Phys. Rev. A 62, 011801 (2000).
    [CrossRef]
  14. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, "The dynamical complexity of optically injected semiconductor lasers," Phys. Rep. 416, 1-128 (2005).
    [CrossRef]
  15. I. Gatare, M. Sciamanna, M. Nizette, and K. Panajotov, "Bifurcation to polarization switching and locking in vertical-cavity surface-emitting lasers with optical injection," Phys. Rev. A 76, 031803(R) (2007).
    [CrossRef]
  16. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasrs," Quantum Semiclassic Opt. 9, 765-784 (1997).
    [CrossRef]
  17. J. K. White, J. V. Maloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, "Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection," IEEE J. Quantum Electron. 34, 1469-1473 (1998).
    [CrossRef]
  18. S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, "Spectral manipulation in Fabry-Pérot lasers: perturbative inverse scattering approach," J. Opt. Soc. Am. B 23, 1046-1056 (2006).
    [CrossRef]
  19. V. Kovanis, T. Erneux, and A. Gavrielides, "Largely detuned injection-locked semiconductor lasers," Opt. Commun. 159, 177-183 (1999).
    [CrossRef]
  20. S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
    [CrossRef]
  21. P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis and L. F. Lester, "Frequency entrainment in optically injected semiconductor lasers," Phys. Rev. Lett. 78, 2353-2356 (1997).
    [CrossRef]
  22. T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, "Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime," Phys. Rev. Lett. 87, 243901 (2001).
    [CrossRef] [PubMed]
  23. E. J. Doedel et al., AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Technical report, Concordia University Montreal, (2007) http://indy.cs.concordia.ca/auto/.
  24. S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
    [CrossRef]
  25. M. Sciamanna and K. Panajotov, "Two-mode injection locking in vertical-cavity surface-emitting lasers," Opt. Lett. 20, 2903-2905 (1999).

2008 (2)

Z. Wang, G. Verschaffelt, Y. Shu, G. Mezosi, M. Sorel, J. Danckaert, and S. Yu, "Integrated small-sized semiconductor ring laser with novel retro-reflector cavity," IEEE Photon. Technol. Lett. 20, 99-101 (2008).
[CrossRef]

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, "Realization of a semiconductor-based cavity soliton laser," Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

2007 (1)

S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, "Switchable lasing in multimode microcavities," Phys. Rev. Lett. 99, 073902 (2007).
[CrossRef] [PubMed]

2006 (6)

Y. D. Jeong, J. S. Cho, Y. H. Won, H. J. Lee, and H. Yoo, "All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode," Opt. Express 14, 4058-4063 (2006).
[CrossRef] [PubMed]

M. Raburn, M. Takenada, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, "Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops," IEEE Photon. Technol. Lett. 18, 1421-1423 (2006).
[CrossRef]

S. Schikora, P. Hövel, H.-J. Wünsche, E. Schöll, and F. Henneberger, "All-optical noninvasive control of unstable steady states in a semiconductor laser," Phys. Rev. Lett. 97, 213902 (2006).
[CrossRef] [PubMed]

T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low-switching energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
[CrossRef]

S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, "Spectral manipulation in Fabry-Pérot lasers: perturbative inverse scattering approach," J. Opt. Soc. Am. B 23, 1046-1056 (2006).
[CrossRef]

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

2005 (3)

2004 (2)

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
[CrossRef]

2001 (1)

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, "Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime," Phys. Rev. Lett. 87, 243901 (2001).
[CrossRef] [PubMed]

2000 (1)

I. Fischer, Y. Liu, and P. Davis, "Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication," Phys. Rev. A 62, 011801 (2000).
[CrossRef]

1999 (2)

V. Kovanis, T. Erneux, and A. Gavrielides, "Largely detuned injection-locked semiconductor lasers," Opt. Commun. 159, 177-183 (1999).
[CrossRef]

M. Sciamanna and K. Panajotov, "Two-mode injection locking in vertical-cavity surface-emitting lasers," Opt. Lett. 20, 2903-2905 (1999).

1998 (1)

J. K. White, J. V. Maloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, "Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection," IEEE J. Quantum Electron. 34, 1469-1473 (1998).
[CrossRef]

1997 (2)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasrs," Quantum Semiclassic Opt. 9, 765-784 (1997).
[CrossRef]

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis and L. F. Lester, "Frequency entrainment in optically injected semiconductor lasers," Phys. Rev. Lett. 78, 2353-2356 (1997).
[CrossRef]

1995 (1)

H. Kawaguchi and I. S. Hidayat, "Gigahertz all-optical flip-flop operation of polarisation-bistable vertical-cavity surface-emitting lasers," Electron. Lett. 31, 1150-1151 (1995).
[CrossRef]

1983 (1)

K. Otsuka and S. Kobayashi, "Optical bistability and nonlinear resonance in a resonant-type semiconductor laser amplifier," Electron. Lett. 19, 262-263 (1983).
[CrossRef]

Ackemann, T.

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, "Realization of a semiconductor-based cavity soliton laser," Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

Amann, A.

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, "Spectral manipulation in Fabry-Pérot lasers: perturbative inverse scattering approach," J. Opt. Soc. Am. B 23, 1046-1056 (2006).
[CrossRef]

Anandarajah, P.

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

Avramopoulos, H.

Baba, T.

S. Ishii and T. Baba, "Bistable lasing in twin microdisk photonic molecules," Appl. Phys. Lett. 87, 181102 (2005).
[CrossRef]

Barry, L. P.

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

Barton, J. S.

M. Raburn, M. Takenada, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, "Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops," IEEE Photon. Technol. Lett. 18, 1421-1423 (2006).
[CrossRef]

Bauer, S.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
[CrossRef]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
[CrossRef]

Brox, O.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
[CrossRef]

Buckley, K.

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

Chi, N.

Chigrin, D. N.

S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, "Switchable lasing in multimode microcavities," Phys. Rev. Lett. 99, 073902 (2007).
[CrossRef] [PubMed]

Cho, J. S.

Clavero, R.

Colle, D.

Danckaert, J.

Z. Wang, G. Verschaffelt, Y. Shu, G. Mezosi, M. Sorel, J. Danckaert, and S. Yu, "Integrated small-sized semiconductor ring laser with novel retro-reflector cavity," IEEE Photon. Technol. Lett. 20, 99-101 (2008).
[CrossRef]

Davis, P.

I. Fischer, Y. Liu, and P. Davis, "Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication," Phys. Rev. A 62, 011801 (2000).
[CrossRef]

de Vries, T.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
[CrossRef]

den Besten, J. H.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
[CrossRef]

Dorren, H. J. S.

Elsäßer, W.

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, "Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime," Phys. Rev. Lett. 87, 243901 (2001).
[CrossRef] [PubMed]

Erneux, T.

V. Kovanis, T. Erneux, and A. Gavrielides, "Largely detuned injection-locked semiconductor lasers," Opt. Commun. 159, 177-183 (1999).
[CrossRef]

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis and L. F. Lester, "Frequency entrainment in optically injected semiconductor lasers," Phys. Rev. Lett. 78, 2353-2356 (1997).
[CrossRef]

Fehse, R.

S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, "Spectral manipulation in Fabry-Pérot lasers: perturbative inverse scattering approach," J. Opt. Soc. Am. B 23, 1046-1056 (2006).
[CrossRef]

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

Firth, W. J.

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, "Realization of a semiconductor-based cavity soliton laser," Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

Fischer, I.

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, "Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime," Phys. Rev. Lett. 87, 243901 (2001).
[CrossRef] [PubMed]

I. Fischer, Y. Liu, and P. Davis, "Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication," Phys. Rev. A 62, 011801 (2000).
[CrossRef]

Gavrielides, A.

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, "Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime," Phys. Rev. Lett. 87, 243901 (2001).
[CrossRef] [PubMed]

V. Kovanis, T. Erneux, and A. Gavrielides, "Largely detuned injection-locked semiconductor lasers," Opt. Commun. 159, 177-183 (1999).
[CrossRef]

J. K. White, J. V. Maloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, "Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection," IEEE J. Quantum Electron. 34, 1469-1473 (1998).
[CrossRef]

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis and L. F. Lester, "Frequency entrainment in optically injected semiconductor lasers," Phys. Rev. Lett. 78, 2353-2356 (1997).
[CrossRef]

Heil, T.

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, "Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime," Phys. Rev. Lett. 87, 243901 (2001).
[CrossRef] [PubMed]

Henneberger, F.

S. Schikora, P. Hövel, H.-J. Wünsche, E. Schöll, and F. Henneberger, "All-optical noninvasive control of unstable steady states in a semiconductor laser," Phys. Rev. Lett. 97, 213902 (2006).
[CrossRef] [PubMed]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
[CrossRef]

Hidayat, I. S.

H. Kawaguchi and I. S. Hidayat, "Gigahertz all-optical flip-flop operation of polarisation-bistable vertical-cavity surface-emitting lasers," Electron. Lett. 31, 1150-1151 (1995).
[CrossRef]

Hill, M. T.

Hohl, A.

J. K. White, J. V. Maloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, "Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection," IEEE J. Quantum Electron. 34, 1469-1473 (1998).
[CrossRef]

Holm-Nielsen, P. V.

Hövel, P.

S. Schikora, P. Hövel, H.-J. Wünsche, E. Schöll, and F. Henneberger, "All-optical noninvasive control of unstable steady states in a semiconductor laser," Phys. Rev. Lett. 97, 213902 (2006).
[CrossRef] [PubMed]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasrs," Quantum Semiclassic Opt. 9, 765-784 (1997).
[CrossRef]

Ishii, S.

S. Ishii and T. Baba, "Bistable lasing in twin microdisk photonic molecules," Appl. Phys. Lett. 87, 181102 (2005).
[CrossRef]

Jäger, R.

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, "Realization of a semiconductor-based cavity soliton laser," Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

Jeong, Y. D.

Jeppesen, P.

Kalmus, R.

J. K. White, J. V. Maloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, "Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection," IEEE J. Quantum Electron. 34, 1469-1473 (1998).
[CrossRef]

Kawaguchi, H.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low-switching energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
[CrossRef]

H. Kawaguchi and I. S. Hidayat, "Gigahertz all-optical flip-flop operation of polarisation-bistable vertical-cavity surface-emitting lasers," Electron. Lett. 31, 1150-1151 (1995).
[CrossRef]

Kehayas, E.

Khoe, G. D.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
[CrossRef]

Kobayashi, S.

K. Otsuka and S. Kobayashi, "Optical bistability and nonlinear resonance in a resonant-type semiconductor laser amplifier," Electron. Lett. 19, 262-263 (1983).
[CrossRef]

Koonen, A. M. J.

Kovanis, V.

V. Kovanis, T. Erneux, and A. Gavrielides, "Largely detuned injection-locked semiconductor lasers," Opt. Commun. 159, 177-183 (1999).
[CrossRef]

J. K. White, J. V. Maloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, "Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection," IEEE J. Quantum Electron. 34, 1469-1473 (1998).
[CrossRef]

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis and L. F. Lester, "Frequency entrainment in optically injected semiconductor lasers," Phys. Rev. Lett. 78, 2353-2356 (1997).
[CrossRef]

Krauskopf, B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, "The dynamical complexity of optically injected semiconductor lasers," Phys. Rep. 416, 1-128 (2005).
[CrossRef]

Kreissl, J.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
[CrossRef]

Kroha, J.

S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, "Switchable lasing in multimode microcavities," Phys. Rev. Lett. 99, 073902 (2007).
[CrossRef] [PubMed]

Lavrinenko, A. V.

S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, "Switchable lasing in multimode microcavities," Phys. Rev. Lett. 99, 073902 (2007).
[CrossRef] [PubMed]

Lee, H. J.

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
[CrossRef]

Lenstra, D.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, "The dynamical complexity of optically injected semiconductor lasers," Phys. Rep. 416, 1-128 (2005).
[CrossRef]

Lester, L. F.

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis and L. F. Lester, "Frequency entrainment in optically injected semiconductor lasers," Phys. Rev. Lett. 78, 2353-2356 (1997).
[CrossRef]

Liu, J. M.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasrs," Quantum Semiclassic Opt. 9, 765-784 (1997).
[CrossRef]

Liu, Y.

Maloney, J. V.

J. K. White, J. V. Maloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, "Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection," IEEE J. Quantum Electron. 34, 1469-1473 (1998).
[CrossRef]

Marti, J.

Martinez, J. M.

Mezosi, G.

Z. Wang, G. Verschaffelt, Y. Shu, G. Mezosi, M. Sorel, J. Danckaert, and S. Yu, "Integrated small-sized semiconductor ring laser with novel retro-reflector cavity," IEEE Photon. Technol. Lett. 20, 99-101 (2008).
[CrossRef]

Mori, T.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low-switching energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
[CrossRef]

Nakano, Y.

M. Raburn, M. Takenada, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, "Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops," IEEE Photon. Technol. Lett. 18, 1421-1423 (2006).
[CrossRef]

O’Brien, S.

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, "Spectral manipulation in Fabry-Pérot lasers: perturbative inverse scattering approach," J. Opt. Soc. Am. B 23, 1046-1056 (2006).
[CrossRef]

O’Gorman, J.

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

O’Reilly, E. P.

S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, "Spectral manipulation in Fabry-Pérot lasers: perturbative inverse scattering approach," J. Opt. Soc. Am. B 23, 1046-1056 (2006).
[CrossRef]

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

Oei, Y. S.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
[CrossRef]

Osborne, S.

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, "Spectral manipulation in Fabry-Pérot lasers: perturbative inverse scattering approach," J. Opt. Soc. Am. B 23, 1046-1056 (2006).
[CrossRef]

Otsuka, K.

K. Otsuka and S. Kobayashi, "Optical bistability and nonlinear resonance in a resonant-type semiconductor laser amplifier," Electron. Lett. 19, 262-263 (1983).
[CrossRef]

Panajotov, K.

M. Sciamanna and K. Panajotov, "Two-mode injection locking in vertical-cavity surface-emitting lasers," Opt. Lett. 20, 2903-2905 (1999).

Patchell, J.

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

Pickavet, M.

Raburn, M.

M. Raburn, M. Takenada, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, "Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops," IEEE Photon. Technol. Lett. 18, 1421-1423 (2006).
[CrossRef]

Radiziunas, M.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
[CrossRef]

Ramos, F.

Riposati, B.

Rondinelli, J. M.

Sartorius, B.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
[CrossRef]

Schikora, S.

S. Schikora, P. Hövel, H.-J. Wünsche, E. Schöll, and F. Henneberger, "All-optical noninvasive control of unstable steady states in a semiconductor laser," Phys. Rev. Lett. 97, 213902 (2006).
[CrossRef] [PubMed]

Schöll, E.

S. Schikora, P. Hövel, H.-J. Wünsche, E. Schöll, and F. Henneberger, "All-optical noninvasive control of unstable steady states in a semiconductor laser," Phys. Rev. Lett. 97, 213902 (2006).
[CrossRef] [PubMed]

Sciamanna, M.

M. Sciamanna and K. Panajotov, "Two-mode injection locking in vertical-cavity surface-emitting lasers," Opt. Lett. 20, 2903-2905 (1999).

Shu, Y.

Z. Wang, G. Verschaffelt, Y. Shu, G. Mezosi, M. Sorel, J. Danckaert, and S. Yu, "Integrated small-sized semiconductor ring laser with novel retro-reflector cavity," IEEE Photon. Technol. Lett. 20, 99-101 (2008).
[CrossRef]

Sieber, J.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
[CrossRef]

Simpson, T. B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, "The dynamical complexity of optically injected semiconductor lasers," Phys. Rep. 416, 1-128 (2005).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasrs," Quantum Semiclassic Opt. 9, 765-784 (1997).
[CrossRef]

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
[CrossRef]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
[CrossRef]

Song, X.

M. Raburn, M. Takenada, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, "Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops," IEEE Photon. Technol. Lett. 18, 1421-1423 (2006).
[CrossRef]

Sorel, M.

Z. Wang, G. Verschaffelt, Y. Shu, G. Mezosi, M. Sorel, J. Danckaert, and S. Yu, "Integrated small-sized semiconductor ring laser with novel retro-reflector cavity," IEEE Photon. Technol. Lett. 20, 99-101 (2008).
[CrossRef]

Stampoulidis, L.

Tafur Monroy, I.

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasrs," Quantum Semiclassic Opt. 9, 765-784 (1997).
[CrossRef]

Takeda, K.

M. Raburn, M. Takenada, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, "Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops," IEEE Photon. Technol. Lett. 18, 1421-1423 (2006).
[CrossRef]

Takenada, M.

M. Raburn, M. Takenada, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, "Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops," IEEE Photon. Technol. Lett. 18, 1421-1423 (2006).
[CrossRef]

Tanguy, Y.

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, "Realization of a semiconductor-based cavity soliton laser," Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

Tsiokos, D.

Van Caenegem, R.

Varangis, P. M.

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis and L. F. Lester, "Frequency entrainment in optically injected semiconductor lasers," Phys. Rev. Lett. 78, 2353-2356 (1997).
[CrossRef]

Verschaffelt, G.

Z. Wang, G. Verschaffelt, Y. Shu, G. Mezosi, M. Sorel, J. Danckaert, and S. Yu, "Integrated small-sized semiconductor ring laser with novel retro-reflector cavity," IEEE Photon. Technol. Lett. 20, 99-101 (2008).
[CrossRef]

Wang, Z.

Z. Wang, G. Verschaffelt, Y. Shu, G. Mezosi, M. Sorel, J. Danckaert, and S. Yu, "Integrated small-sized semiconductor ring laser with novel retro-reflector cavity," IEEE Photon. Technol. Lett. 20, 99-101 (2008).
[CrossRef]

White, J. K.

J. K. White, J. V. Maloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, "Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection," IEEE J. Quantum Electron. 34, 1469-1473 (1998).
[CrossRef]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, "The dynamical complexity of optically injected semiconductor lasers," Phys. Rep. 416, 1-128 (2005).
[CrossRef]

Won, Y. H.

Wünsche, H.-J.

S. Schikora, P. Hövel, H.-J. Wünsche, E. Schöll, and F. Henneberger, "All-optical noninvasive control of unstable steady states in a semiconductor laser," Phys. Rev. Lett. 97, 213902 (2006).
[CrossRef] [PubMed]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
[CrossRef]

Yamayoshi, Y.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low-switching energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
[CrossRef]

Yan, N.

Yoo, H.

Yu, S.

Z. Wang, G. Verschaffelt, Y. Shu, G. Mezosi, M. Sorel, J. Danckaert, and S. Yu, "Integrated small-sized semiconductor ring laser with novel retro-reflector cavity," IEEE Photon. Technol. Lett. 20, 99-101 (2008).
[CrossRef]

Zhang, J.

Zhukovsky, S. V.

S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, "Switchable lasing in multimode microcavities," Phys. Rev. Lett. 99, 073902 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

S. Ishii and T. Baba, "Bistable lasing in twin microdisk photonic molecules," Appl. Phys. Lett. 87, 181102 (2005).
[CrossRef]

T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low-switching energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006).
[CrossRef]

Electron. Lett. (2)

K. Otsuka and S. Kobayashi, "Optical bistability and nonlinear resonance in a resonant-type semiconductor laser amplifier," Electron. Lett. 19, 262-263 (1983).
[CrossRef]

H. Kawaguchi and I. S. Hidayat, "Gigahertz all-optical flip-flop operation of polarisation-bistable vertical-cavity surface-emitting lasers," Electron. Lett. 31, 1150-1151 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. K. White, J. V. Maloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, "Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection," IEEE J. Quantum Electron. 34, 1469-1473 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Wang, G. Verschaffelt, Y. Shu, G. Mezosi, M. Sorel, J. Danckaert, and S. Yu, "Integrated small-sized semiconductor ring laser with novel retro-reflector cavity," IEEE Photon. Technol. Lett. 20, 99-101 (2008).
[CrossRef]

M. Raburn, M. Takenada, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, "Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops," IEEE Photon. Technol. Lett. 18, 1421-1423 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (London) (1)

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature (London) 432, 206-209 (2004).
[CrossRef]

Opt. Commun. (1)

V. Kovanis, T. Erneux, and A. Gavrielides, "Largely detuned injection-locked semiconductor lasers," Opt. Commun. 159, 177-183 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

M. Sciamanna and K. Panajotov, "Two-mode injection locking in vertical-cavity surface-emitting lasers," Opt. Lett. 20, 2903-2905 (1999).

Phys. Rep. (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, "The dynamical complexity of optically injected semiconductor lasers," Phys. Rep. 416, 1-128 (2005).
[CrossRef]

Phys. Rev. A (2)

S. O’Brien, S. Osborne, K. Buckley, R. Fehse, A. Amann, E. P. O’Reilly, L. P. Barry, P. Anandarajah, J. Patchell, and J. O’Gorman, "Inverse scattering approach to multiwavelength Fabry-P’erot laser design," Phys. Rev. A 74, 063814 (2006).
[CrossRef]

I. Fischer, Y. Liu, and P. Davis, "Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication," Phys. Rev. A 62, 011801 (2000).
[CrossRef]

Phys. Rev. E (1)

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radiziunas, J. Sieber, H.-J. Wünsche, and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical feedback," Phys. Rev. E 69, 016206 (2004).
[CrossRef]

Phys. Rev. Lett. (5)

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis and L. F. Lester, "Frequency entrainment in optically injected semiconductor lasers," Phys. Rev. Lett. 78, 2353-2356 (1997).
[CrossRef]

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, "Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime," Phys. Rev. Lett. 87, 243901 (2001).
[CrossRef] [PubMed]

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, "Realization of a semiconductor-based cavity soliton laser," Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

S. Schikora, P. Hövel, H.-J. Wünsche, E. Schöll, and F. Henneberger, "All-optical noninvasive control of unstable steady states in a semiconductor laser," Phys. Rev. Lett. 97, 213902 (2006).
[CrossRef] [PubMed]

S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, "Switchable lasing in multimode microcavities," Phys. Rev. Lett. 99, 073902 (2007).
[CrossRef] [PubMed]

Quantum Semiclassic Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasrs," Quantum Semiclassic Opt. 9, 765-784 (1997).
[CrossRef]

Other (2)

I. Gatare, M. Sciamanna, M. Nizette, and K. Panajotov, "Bifurcation to polarization switching and locking in vertical-cavity surface-emitting lasers with optical injection," Phys. Rev. A 76, 031803(R) (2007).
[CrossRef]

E. J. Doedel et al., AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Technical report, Concordia University Montreal, (2007) http://indy.cs.concordia.ca/auto/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The optical power of the short wavelength mode, V 1, as a function of the injected power at the long wavelength mode, V 2, in up and down sweep as indicated by the arrows. The lower left inset shows the two color equilibrium state. The upper left inset shows the injected mode in this state in close-up where a two-peak structure is seen. These peaks are separated by the detuning frequency. The right inset shows the single mode locked state of the device.

Fig. 2.
Fig. 2.

Power spectral densities (PSD) of each of the primary modes of the device as a function of the injected power. The upper panel shows the PSD for increasing injection, while the lower panels show the PSD for decreasing injection. The frequency detuning is Δω = -14 GHz and the relaxation oscillation frequency is v RO = 3.9 GHz. Left panels: uninjected mode, v 1. Right panels: Injected mode, v 2.

Fig. 3.
Fig. 3.

Left panel: The experimental setup schematic for the all-optical memory element device operation; PC, polarization controller; A.M., amplitude modulator; BS, beam splitter; L, lens; I, isolator; G, grating. Right panels: The intensity time traces of the uninjected mode, v 1, the injected mode, v 2, and of the injected field strength. The pulse duration is 5 ns.

Fig. 4.
Fig. 4.

Left panels: Local extrema of the field intensities (a) ∣E 12 and (b) ∣E 22 obtained from numerical integration of Eqs. (1) – (3) as a function of the injected field strength for increasing and decreasing injection. The frequency detuning is -14 GHz. Right panels: Numerical intensity time traces of the injected field strength and of the two primary modes of the device. The detuning is -14 GHz. The average value of the injected field strength is 0.018 with a modulation of ± 0.008. The pulses are 5 ns duration with a 200 ps rise-time.

Fig. 5.
Fig. 5.

(a) Bifurcation diagram in the Δω vs. K plane. Subcritical and supercritical Hopf bifurcations are indicated by dashed and solid blue lines and labeled via H - m and H + m , respectively. H 1 ± and H 2 ± denote Hopf bifurcations of single and two mode equilibria, respectively. The solid black line SN is the saddle-node bifurcation of the single mode locked state. Filled and open circles are experimental data showing the locking and unlocking transitions respectively. (b) Bifurcation diagram in the Δω vs. K plane with ε = 0. Given the value of γ= 9.8 × 1011 s -1, a frequency detuning of 1 GHz corresponds to a value of 0.00641 in dimensionless units.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ˙ 1 = 1 2 ( 1 + ) ( g 1 ( 2 n + 1 ) 1 ) E 1
E ˙ 2 = [ 1 2 ( 1 + ) ( g 2 ( 2 n + 1 ) 1 ) i Δ ω ] E 2 + K
T n ˙ = P n ( 1 + 2 n ) m g m E m 2
g m = g m ( 0 ) ( 1 + ε n β mn E n 2 ) 1 .

Metrics